2024 | Faculty of Sciences

m % Maastricht University

KNOWLEDGE IN ACTION

Doctoral dissertation submitted fo obtain the degree of
Doctor of Sciences: Information Technology, to be defended by

Mannu Lambrichts

DOCTORAL DISSERTATION
Democratizing Prototyping of
nferactive Devices: A Unitied
Plug-and-Play Platform for
nterconnecting and Driving
Heterogeneous Electronic
Components

»»> | UHASSELT | EDM

Promoter: Prof. Dr Raf Ramakers | UHasselt D/2024/2451/67

Co-promoters: Prof. Dr Kris Luyten | UHasselt
Prof. Dr Steve Hodges | Lancaster University

ACKNOWLEDGEMENTS

I am deeply grateful to everyone who has supported and guided me throughout my
PhD journey. This thesis would not have been possible without the contributions,
encouragement, and support of many individuals and institutions who have helped
shape both my research and my personal growth over these years.

First and foremost, I want to express my sincerest gratitude to my promotor, Prof. Dr.
Raf Ramakers. Thank you for giving me the opportunity to pursue a PhD and for
being a constant source of inspiration and guidance. From sparking my interest in
Human-Computer Interaction (HCI) research during my master’s studies to allowing
me the freedom to explore my own research interests, your mentorship has been
invaluable. I truly appreciate the trust you placed in me, the thoughtful advice you
provided, and your patience in trying to make sense of my often unorganized ideas and
thoughts. I am also grateful for the numerous opportunities you offered, from attending
conferences to introducing me to key figures in the field. Your dedication to my growth,
especially during our late-night work sessions before paper deadlines, is a testament
to your commitment to my success. I couldn’t have asked for a more supportive and

understanding supervisor.

I am also deeply thankful to my co-promotor, Prof. Dr. Kris Luyten, for his insightful
advice and unwavering support throughout my PhD. Your guidance has been instru-
mental in shaping my research, and I am grateful for the time you invested in helping
me. Your method of guiding people truly reflects a deep commitment to understanding
their individual needs and fostering their growth.

My heartfelt thanks go to Prof. Dr. Steve Hodges, who joined as my second co-promotor
midway through my PhD. While your guidance in developing my electronic prototypes
was incredibly helpful, I have learned much more from you in various aspects of research
and innovation. Your advice, insights, and the connections you facilitated within the
broader research community have greatly enriched my experience and contributed to
my growth as a researcher. I am truly grateful for all the knowledge and opportunities
you have shared with me.

I would also like to thank Prof. Dr. Rong-Hao Liang for being a member of my PhD
committee and for offering valuable feedback throughout my research journey. Your
insights have been incredibly helpful in refining my work, and I am truly grateful for

your thoughtful input and encouragement.

I am also deeply appreciative of the members of my PhD jury, Prof. Dr. Céline Coutrix
and Prof. Dr. Aluna Everitt, for their time and thoughtful feedback on this dissertation.
Your constructive comments have significantly improved my work, and I am grateful for
the effort you put into reviewing my research, as well as your commitment to my PhD
defense.

Throughout my PhD, I have had the privilege of working with many inspiring researchers
and colleagues at the EDM. Room 0.02, in particular, will always hold a special place in
my heart. I am especially thankful to Dr. Tom Veuskens, who began his PhD around
the same time as I did. Tom, our conversations, whether about research, the ups and
downs of the PhD journey, or life in general, have been a constant source of support
and camaraderie. I am also grateful to Dr. Danny Leen for all our discussions and his
valuable input on my—often very chaotic—ideas. I would also like to thank him for
helping to improve the design of the figures used in my papers. I also want to thank
Dries Cardinaels, for bringing fresh insights and perspectives to our discussions. Your
enthusiasm and new ideas have been a breath of fresh air.

Beyond room 0.02, I want to thank Joris Herbots, Jeroen Ceyssens, and Dr. Bram
Vandeurzen for all the insightful conversations and support, both in research and on
a personal level. Each of you has played a significant role in helping me navigate the
challenges of completing a PhD, and I am deeply grateful for your friendship and advice.
A special thanks goes to Joris for accompanying me through the last ten years, from our
bachelor’s and master’s studies to the PhD journey. With your help and companionship,
every step of this journey has been more manageable and memorable.

I am incredibly grateful for the wonderful work environment I experienced during my
PhD. It has been a privilege to collaborate with so many people from diverse research
areas who are always willing to help and work together. The openness and collaborative
spirit within EDM have made this journey not just productive but also enjoyable. I

cherish the friendships and memories we have created along the way.

On a professional note, I would like to acknowledge Dr. James Devine for his guidance
in understanding the Jacdac protocol and Lorraine Underwood and Prof. Dr. Joe Finney
for their efforts in conducting a preliminary user study on the CircuitGlue concept.
Dr. Sven Coppers provided significant assistance with the statistics for the toolkit
classification survey, and Prof. Dr. Davy Vanacken offered valuable feedback on papers,
even when asked at the last minute. I am also grateful to all the individuals I met at
conferences who shared their ideas and helped me broaden my horizons.

On a personal note, I cannot express enough gratitude to my partner, Delphine Tweepen-
ninckx. Delphine, you have been my rock throughout this entire journey, always
believing in me and pushing me to do my best, even during the toughest times. Your
unwavering support and love have been my guiding light, helping me through every

ii

struggle and every long hour spent working. I am so grateful for your encouragement,
your patience, and for always standing by my side. Thank you for everything, Delphine.

I would also like to thank my parents, my brother Willem Lambrichts, and my entire
family for their constant belief in me and their endless support. Your encouragement
has been a source of strength and motivation, and I am deeply grateful for all the love
and support you have given me.

Finally, a special thanks to my friends Jorrit Gerets and Maarten Vangeneugden for their
advice and feedback on the many challenges I faced during this journey. Your friendship
and support have been invaluable, and I am thankful for the many conversations that
helped me stay on track.

To everyone who has been a part of this journey, thank you from the bottom of my heart.
This thesis is a testament to your support, encouragement, and belief in me. I couldn’t
have done it without you.

1ii

ABSTRACT

In the evolving landscape of electronics prototyping, a critical challenge has emerged:
bridging the divide between the expectations of creators and the practical capabilities of
the available prototyping tools. This dissertation seeks to tackle this challenge, aiming
to harmonize the varied facets of the prototyping ecosystem. This approach goes
beyond merely cataloging available tools; it seeks to find common ground—a unified
understanding that encompasses the wide array of prototyping methodologies, toolkit
functionalities, and user experiences.

My endeavor to find common ground begins with mapping the current electronics
prototyping ecosystem. This involves a deep dive into the plethora of toolkits available
to individuals, examining not only their technical specifications but also their design
philosophies, intended user groups, and practical applications. The aim is to distill
this rich tapestry of information into a cohesive framework that simplifies the decision-
making process for users, enabling them to select tools that best align with their project
goals and skill levels.

Further, recognizing the diversity of the prototyping community, this dissertation
explores the varied needs and strategies of users. From hobbyists working on DIY
projects to professional engineers developing complex systems, each user brings unique
perspectives and requirements. By conducting an online survey, I gather firsthand
insights into the challenges users face, the tools they prefer, and the strategies they
employ to realize their visions. This comprehensive understanding is crucial for
developing tailored solutions that address unmet needs and enhance the efficiency of
prototyping practices.

The process of finding common ground also involves the development of integrated
hardware-software solutions to streamline prototyping workflows. The challenges of
compatibility and the technical complexities of integrating disparate components are
significant hurdles for many individuals. By introducing innovative solutions that
facilitate seamless interaction between software applications and hardware devices, I
aim to simplify the prototyping process, making it more accessible and enjoyable for
creators of all backgrounds.

In summary, “Finding Common Ground” is not just about cataloging tools or identifying
user preferences; it's about weaving together the diverse threads of the electronics

vi

prototyping world into a coherent narrative. By achieving this, I hope to pave the way for
future innovations in electronics toolkit offerings, making prototyping more accessible,

efficient, and fulfilling for individuals everywhere.

Vil

List OF SciENTIFIC CONTRIBUTIONS

This dissertation builds upon a series of academic publications and presentations that
have been recognized within the Human-Computer Interaction (HCI) community. These
works, which have appeared in scientific journals and been presented at international
conferences, collectively contribute to the ongoing discourse in the HCI field.

This dissertation is an extension of the following academic publications in scientific
journals and presented at international conferences in the field of Human-Computer
Interaction (HCI):

1. Mannu Lambrichts, Raf Ramakers, Steve Hodges, Sven Coppers, and James
Devine. 2021. A Survey and Taxonomy of Electronics Toolkits for Interactive and
Ubiquitous Device Prototyping. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 5, 2, Article 70 (June 2021), 24 pages. (Best Presentation Award)

2. Mannu Lambrichts, Raf Ramakers, Steve Hodges, James Devine, Lorraine Un-
derwood, and Joe Finney. 2023. CircuitGlue: A Software Configurable Converter for
Interconnecting Multiple Heterogeneous Electronic Components. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 7, 2, Article 63 (June 2023), 30 pages.

3. Mannu Lambrichts, Raf Ramakers, Steve Hodges. 2024. LogicGlue: Hardware-
Independent Embedded Programming Through Platform-Independent Drivers. Proc.
ACM Hum.-Comput. Interact., EICS. [Manuscript submitted for publication]

In addition to the main contributions listed in the previous section, I have contributed to
a number of publications that have not been directly incorporated into this dissertation:

1. Mannu Lambrichts, Jose Maria Tijerina, and Raf Ramakers. 2020. SoftMod: A
Soft Modular Plug-and-Play Kit for Prototyping Electronic Systems. In Proceedings of
the Fourteenth International Conference on Tangible, Embedded, and Embodied
Interaction (TEI "20). Association for Computing Machinery, New York, NY, USA,
287-298. (as the result of my master’s thesis)

2. Mannu Lambrichts, Jose Maria Tijerina, Tom De Weyer, and Raf Ramakers. 2020.
DIY Fabrication of High-Performance Multi-Layered Flexible PCBs. In Proceedings of
the Fourteenth International Conference on Tangible, Embedded, and Embodied
Interaction (TEI "20). Association for Computing Machinery, New York, NY, USA,

viil

565-571. (as the result of my master’s thesis)

3. Andrea Bianchi, Steve Hodges, David J. Cuartielles, Hyunjoo Oh, Mannu Lam-
brichts, and Anne Roudaut. 2023. Beyond Prototyping Boards: Future Paradigms
for Electronics Toolkits. In Extended Abstracts of the 2023 CHI Conference on
Human Factors in Computing Systems (CHI EA "23). Association for Computing
Machinery, New York, NY, USA, Article 333, 1-6.

I also demonstrated some of the work presented in this dissertation:

1. Mannu Lambrichts, Raf Ramakers, Steve Hodges. 2022. Using Electronic Toolkits:
Learning and Combining their Properties. Aachen Maker Meetup, remote.

2. Mannu Lambrichts, Raf Ramakers, Steve Hodges. 2022. Using Electronic Toolkits:
Learning and Combining their Properties. Sketching in Hardware, Dublin, Ireland.

3. Mannu Lambrichts, Raf Ramakers, Steve Hodges. 2023. Plug-and-Play Electronics
by CircuitGlue. Poster at the 2023 Flanders Make Scientific Conference.

X

CONTENTS

Acknowledgements i
Abstract Vi
List of Scientific Contributions viii
Contents X
List of Figures Xiv
List of Tables XX
Acronyms xxiii
1 Introduction 2
1.1 Introduction to Physical Computing 2
1.2 Interaction Modalities in Physical Computing 3
1.3 Exploring the Diversity of Physical Computing Platforms 4
1.3.1 Assembling Hardware: A Tangible Foundation 4
1.3.2 Developing Software: Bringing Hardware to Life 5

1.3.3 Bridging Hardware and Software: The Role of Hardware and
SoftwareGlue L o 6
1.4 Research Questions i i i i it e i 8
1.5 ResearchGoals 9
1.6 Contributions 10
1.7 DissertationOutline 12
2 Established Approaches to Electronics Prototyping 14
21 Introduction 14
22 Typesof Prototyping 15
2.3 Bridging BetweenTypes 21
24 Takingalookintothe Future 23
3 Finding Common Ground 24
31 Imtroduction 25

CONTENTS

3.2 Identifying and Reviewing the Literature 26
3.2.1 Whatis an Electronics Prototyping Toolkit? 26
3.2.2 Corpus of Products and Publications 27
3.2.3 Characteristics L o 27
324 DataPointsandClusters 27
3.3 Electronic Prototyping Platform Taxonomy 28
3.3.1 Nature and Application 28
3.3.2 Assembly of Prototypes 29
3.3.3 Deploying and Configuring 31
3.3.4 Availability and Adoption oL 31
3.4 Analyzing the characteristics, 32
3.5 Understanding How Electronics Toolkitsare Used 36
3.5.1 Our Respondents and Their Prototyping Experience 37
3.5.2 Use of Prototyping Platforms 38
3.5.3 Important Characteristics of Prototyping Platforms 39

3.5.4 Experiences of Type 1 Prototyping and Scaling Up to Multiple
Copies 40
36 Discussion e 42
37 Summary 45
Plug-and-Play Hardware Through CircuitGlue 46
41 Introduction 47
42 Walkthrough 49
43 Related Work 52
43.1 Modules for Electronics Prototyping 53
4.3.2 Tools to Ease Breadboarding and Development 53
43.3 Reprogrammable Integrated Circuits 54
44 DesignRationale 0 0. 55
4.4.1 Early Feedback on the CircuitGlue Concept 55
442 DesignDecisions 56
443 JacdacasBusProtocol 57
45 Supporting New Modules, 57
4.6 CircuitGlue Hardware Design 60
461 System-on-Chip. 60
46.2 RegulatingPower o . 60
4.6.3 Changing the Assignment of a Programmable Header Pin 62
4.6.4 Circuit Board Design and Manufacturing 65
4.7 CircuitGlue Software Architecture, 66
471 CircuitGlue Firmware 66
472 CircuitGlue ConfigurationTool 66
473 Circuit Diagram Generator 67
4.8 Prototyping Styles and Benefits 68

xi

CONTENTS

4.8.1 Understanding, Testing and Comparing Modules 68

482 Rapid Prototyping with Heterogeneous Modules 68

4.8.3 Facilitate Breadboarding 0 L 70

4.8.4 Use Third Party Modules with Jacdac Ecosystem 70

485 AdvancedUse e 71

49 Technical Benchmark 72
410 Preliminary User Evaluation. 74
410.1 Participantso 75
4.10.2 Procedure 75
4103 Results e 76

411 Incorporating User Feedback, 78
4111 Modular PCBDesign 78
4.11.2 Power Management 79
4.11.3 Changing Pin Assignments 80
4114 Enhanced Visual Feedback 83
4115 CircuitGlue ConfigurationTool 84

412 Discussionand Future Work 84
413 Summary 86
5 Plug-and-Play Software Drivers Through LogicGlue 88
5.1 Introduction e 89
52 LogicGlue 92
52.1 Writing Application Logic 92

52.2 Writing Driver Specifications 94

5.3 Related Work 96
5.3.1 Software Abstraction 96

5.3.2 Standardized Communication Interfaces 98

5.3.3 Intermediate Representation Layers 99

5.4 LogicGlue Driver Specification 100
5.4.1 Function Definitions 100

54.2 NumericlInstructions 102

54.3 ListInstructions., 104

5.4.4 Branching Instructions 106

545 AdvancedInstructions 107

55 LogicGlueInterpreter. L L. 109
5.5.1 LogicGlue High-Level Programming Library 109

552 Converting Data Formats 110

5.6 Supporting LogicGlue on a new Platform 112
5.7 LogicGlue Benchmark, 113
5.8 Discussionand Future Work, 114
59 Summary 117

Xii

CONTENTS

6 On-going Research into Unified Plug-and-Play Programming 118

6.1 Introduction e 119

6.2 UniGlue: Bridging Hardware and Software for Unified Prototyping . . . 121

6.2.1 Shared ResourceBus 121

6.2.2 CommunicationBus 122

6.2.3 UniGluelnterface 125

6.2.4 UniGlue Extension Shield 127

6.3 Walkthrough 129

6.4 Discussion e e e e e e e e e 131

641 Plug-and-Play 131

6.42 Moving from TYPE2toTYPE3 132

6.5 Limitations and Future Work 133

6.6 Conclusion e e 135

7 Discussion and Future Work 136

7.1 Addressing the ResearchGoals 136

7.2 The Role of Ecosystems in Physical Computing 137

7.2.1 Defining and Understanding Ecosystems 137

7.2.2 Challenges and Barriers in Ecosystems 138

7.2.3 The Future of Ecosystems 139

7.3 The Importance of Future User Evaluations 140

74 Future Directions e 141

74.1 Responsive ApplicationCode 141

7.4.2 Configuration through Hardware and Software 144

743 Modular Hardware Design 144

744 Moving from Prototype to Product 145

7.4.5 Enhancing Collaboration and Community Engagement 146

7.4.6 Addressing Environmental and Sustainability Concerns 147

8 Conclusion 148
Appendices

A Toolkit Classification 172

A.1 Holistic Characteristics o o v i it e 172

B LogicGlue Driver Specification 174

B.1 Instructions e 174

B.2 Numerics Subsystem 178

B.3 ListsSubsystem 184

C LogicGlue Interpreter 187

C.1 Platform-Specific Functions 187

xiii

1.1

2.1

2.2
23

24
25

2.6

2.7

3.1
3.2

3.3

34

3.5
3.6

List OF FIGURES

This figure illustrates how the research questions and goals relate to the
contributions made in this dissertation. 11

Summary of the five prototyping types we defined. Referred platforms are
Arduino [Arduino, 2022], Teensy [Teensy, 2021], Raspberry Pi [Pi, 2022b],
micro:bit [microbit, 2022], Circuit Playground Express [Adafruit, 2024],
Jacdac [Devine, 2022] and .NET Gadgeteer [Hodges, 2013]. 15

Ilustration of a set of discrete components, considered TYPE 1 prototyping. 16

[ustration of a set of microcontroller development boards, considered
TYPE 2a prototyping. 17

Illustration of a set of breakout boards, considered TYPE 2b prototyping. 18

[lustration of an integrated development board, considered TYPE 2c
prototyping. This figure shows the micro:bit [microbit, 2022] platform. . 19

Ilustration of an integrated modular system, considered TYPE 3 proto-
typing. This figure shows the Jacdac [Devine, 2022] platform. 20

Overview of all modules within the SoftMod ecosystem. 21

Categories and labels concerning the nature and application of the platforms. 29

Categories and labels concerning the assembly of individual elements
into a working prototype. Lo Lo 29

Categories and labels relating to deploying and configuring electronic
prototypes built with the platforms in our survey. Note that the labels in

two categories are not mutually exclusive. L. 31

Categories and labels relating broadly to the availability and use of the
electronic prototyping platforms in-scope for our survey. 32

A visualization of the first part of our dataset. 34

A visualization of the second part of our dataset. The four clusters,
representing more than a single toolkit, have a gray background. 35

xiv

LIST OF FIGURES

3.7 Prototyping platforms ranked according to four holistic characteristics,
with ‘better” on the right. Not all platforms can be named due to space
constraints, but the shading indicates the distribution of all 56 platforms
from this study across each characteristic. Note that rankings are all
relative to the dataset. A larger version of this image can be found in
Appendix A1, L

3.8 Comparing the ranking of the importance of different characteristics be-
tween electronics engineers and respondents with a different background.
We determined significance using Mann-Whitney U tests (* p < 0.05, **
p<0001).

3.9 The number of copies of electronic prototypes made by electronics engi-
neers and respondents from other disciplines.

4.1 CircuitGlue is a novel electronic prototyping board that allows a wide
variety of off-the-shelf electronic components and modules to be con-
nected to a software configurable header (at right). After configuration
and connection, modules work instantly and are compatible with each
other independent of the voltage levels, interface types, communication
protocols, and pinouts theyuse. L.

42 Configuring the CircuitGlue board to drive the temperature sensor by
(1) connecting the CircuitGlue board to the computer and micro:bit,
(2) configuring CircuitGlue by selecting the temperature module in the
configuration tool, and (3) plugging the temperature sensor module into
the programmable header.

4.3 Web-based CircuitGlue configurationtool.
4.4 Visualizing the reading of the temperature sensor module in the Jacdac
dashboard.
4.5 Writing the application logic on the micro:bit using MakeCode building
blocks.
4.6 A circuit diagram generated to facilitate building a custom circuit using
the DC motor, temperature sensor, and PIR motion sensor.
4.7 Comparing the ultrasonic distance sensor and PIR motion sensor side-
to-side in the Jacdac dashboard. The Jacdac dashboard visualizes the
distance sensor (left) using a numeric value, while the motion sensor
(right) is represented by a graphical illustration indicating whether motion
isdetectedornot. L o o
4.8 Example of the conceptual renderings used in the interviews to gather
early feedback on the CircuitGlue concept.
4.9 Example of the translation code written to support the DHT11 temperature
sensormodule. L L L

410 Adding a new module to the database using the configuration tool. . . .

XV

36

39

52

53

LIST OF FIGURES

411

4.12

4.13

4.14

4.15

4.16

4.17
4.18

4.19

4.20

4.21

4.22
4.23
4.24

4.25
4.26

4.27

4.28

4.29

4.30

The design of the CircuitGlue board with (1) a System-on-Chip (SoC)
controlling and monitoring the board, (2) voltage regulation and power
delivery, and (3) hardware components for switching the assignment of
programmablepins.o L
Block diagram with all regulators responsible for providing the three
voltage levels used by the CircuitGlue board.
The required setting in the digital potentiometer based on the requested
output voltage and selected top resistor. 0oL
Block diagram of all components required for changing the assignments
of the programmable header pins of the CircuitGlue board.
Circuit for connecting the programmable header pin to a digital high-
speed GPIO pin on the nRF52840SoC.
Circuit for connecting the programmable header pin to an analog pin on
the nRF52840SoC.
Circuit for connecting the programmable header pin to ground.
Circuit for connecting the programmable header pin to the programmable
voltagelevel.
Comparing two different types of accelerometers in the Jacdac dashboard
by using two connected CircuitGlueboards.
Building a prototype using multiple CircuitGlue boards.
Building a prototype using a single CircuitGlue board in combination
with the circuit diagram generator to facilitate building the breadboard
crcuits.
CircuitGlue used to extend the Jacdac ecosystem with new modules. . .
Results of the technical evaluation of CircuitGlue.
Breadboard diagram demonstrating how participants of the user evalua-
tion should interconnect all electronic modules.
Overview of the updated CircuitGlueboard.
The updated design of the modular CircuitGlue system with (1) a con-
troller board containing a System-on-Chip (SoC) for controlling and
monitoring the CircuitGlue system, (2) a power board for voltage regula-
tion and USB-C Power Delivery, and (3) a set of logic boards responsible
for switching the assignment the programmable header pins.
Block diagram of the power board illustrating all voltage regulators
responsible for providing the voltage levels used by the CircuitGlue logic
boards.
Block diagram of the logic board, which is responsible for changing the
assignments of four programmable header pins.
Block diagram illustrating the circuit for selecting the output voltage in
each logicboard.
Circuit for connecting the programmable header pin to ground, power,
oroutputaPWMsignal. L.

XVi

61

62

65

81

LIST OF FIGURES

431

4.32

4.33

51

52

53

54

55

5.6

5.7
5.8
59

5.10

5.11

5.12

5.13

Circuit for connecting the programmable header pin to a digital high-
speed GPIO pin on the nRF52840SoC. 82
Circuit for connecting the programmable header pin to an analog pin on
the STMMCU. 83

Redesign of the CircuitGlue interface, with (a) an active DC motor, (b) a
configured RGB LED module, and (c) a second DC motor being configured. 84

Overview of LogicGlue. (a) The novel driver specification of LogicGlue en-
codes the behavior of drivers in bytecode to ensure platform independence
and compatibility across various microcontrollers and programming lan-
guages. (b) The LogicGlue interpreter is responsible for processing the
bytecode driver specifications and executing platform-specific commands.
(c) The LogicGlue programming library is designed to facilitate interaction
with electronic components through the interpreter. 91
a) The traditional code that is required to interact with the TMP36 analog
temperature sensor. b) The traditional code that is required to interact
with the MCP9808 digital temperature sensor. 93
a) Preamble for including the LogicGlue driver specification for the
TMP36 analog temperature sensor. b) Preamble for including the Log-
icGlue driver specification for the MCP9808 digital temperature sensor.
c) Application logic interacting with either temperature sensor using
temperatures in Fahrenheit. 94
LogicGlue’s graphical interface for creating drivers using the driver
specification. L L Lo 95

LogicGlue driver specification for the MCP9808 temperature sensor. . . 96

Driver specification for the HC-SR04 ultrasonic distance sensor. a) shows
the bytecode definition, b) the boot function, and c) contains all function
definitions. e 101

Defining a property for setting the gain of the TCS34725 color sensor. . . 103
Defining static properties for getting the size of the SSD1306 OLED display.103

[lustration of the numeric subsystem within the LogicGlue driver speci-

fication, demonstrating various numeric operations. 104
[lustration of the list subsystem within the LogicGlue driver specification,
demonstrating the instructions for sending the pixel buffer to the SSD1306
OLEDdisplay. e 105
Example of the FOREACH_BYTE instruction. 106
Example of the LogicGlue driver specification, demonstrating the scope
of variables. L 107
Example of advanced instructions of the LogicGlue driver specifica-

tion, demonstrating how an if-elif-else test can be created using GOTO
instructionsand labels. 0 0oL 108

Xvii

LIST OF FIGURES

5.14

5.15

5.16

5.17

5.18

6.1

6.2

6.3

6.4

6.5

6.6

6.7
6.8

6.9

Example of advanced instructions of the LogicGlue driver specification,
demonstrating how a for-loop can be created using GOTO instructions
andlabels. 108
Example of the application logic for interacting with an ultrasonic distance
sensorand RGBLED. 109

Example of the application logic for interacting with the SSD1306 OLED

Subset of the graph with data formats and their converters. This figure
shows data formats for color representations. 112
A conceptual illustration of an extension shield equipped with a mem-
ory chip allows for the embedding of a component’s driver, ensuring
automatic recognition and configuration by LogicGlue upon connection. 117

Components of the UniGlue system, with a) the UniGlue controller board,
b) the UniGlue logic boards, c) the splitter separating the programmable
header of the logic board, d) 4-pin UniGlue extension shield, e) 8-pin
UniGlue extension shield, and f) the user’s microcontroller. 122
Example of the UniGlue setup, with a) the UniGlue controller board,
b) the UniGlue logic board, and ¢) an OLED display connected to the
UniGlue extension shield. 123
Block illustration of the RS485 communication bus in the UniGlue system
used for back-end data exchange between all boards. 124
Timing sequence of the UniGlue control line to manage bus access. (a)
Two devices simultaneously attempt to access the bus by pulling the
control line low. (b) Device 1, with a shorter pulse duration, checks the
control line and finds it still low, indicating that another device has taken
control. (c) Device 2, having a longer pulse duration, checks the control
line and finds it high, confirming that it now has control of the bus. (d)
Device 2 completes data transmission and releases the control line by
returning it to a high state, making the bus available for other devices. . 125
The UniGlue interface for displaying and interacting with connected
electronic components. The logic board on the bottom uses a splitter
board to divide the programmable header intotwo. 126
Popup showing an interactive example for the plugged-in DHT-22 tem-
perature and humidity sensor. In this example, users can specify the
desired output format for the temperature, and copy the example code
directly into their application. 127
Popup for selecting a component (a) or uploading a driver file (b). 128
Example where component (a) is detected automatically and component
(b) is manually configured. o Lo oL 128
Image of the UniGlue interface for specifying component specifications
foranewdriver. L L 129

XViil

LIST OF FIGURES

6.10

6.11

6.12

7.1

Al

C1

UniGlue extension shield with 4 pins (a) or 8 pins (b), depending on the
number of pins of the electronic component. 130
The UniGlue extension shield uses offset pin holes to provide a press-fit
connection for components as an alternative to soldering. 133
Example illustration of a playground for an ultrasonic distance sensor

allowing users to map numeric distance readings to percentages or colors.135

Example of a modular PCB with replaceable motor drivers. Photo by
BIGTREETECH (SKR3 EZ control board). 145

Prototyping platforms ranked according to four holistic characteristics,
with ‘better” on the right. Not all platforms can be named due to space
constraints, but the shading indicates the distribution of all 56 platforms
from this study across each characteristic. Note that rankings are all
relative to thedataset. o o o L 173

Header file detailing the platform-specific functions needed to be imple-
mented when porting LogicGlue to a new platform. 187

Xix

List oF TABLES

3.1 The four more holistic (and somewhat subjective) characteristics we

51

evaluated (left) and the set of objective characteristics upon which they
arebased (right). L o o 33

Execution times for interacting with electronic components using
component-specific libraries versus LogicGlue. 114

XX

API

CPU

DAC
DFU
DIY

ESC

FPAA
FPGA

GPIO

HAT
HATs
HCI

IC
IDE
IoT
IRL

MCU

PCB
PCI
PD
PIO
PPI
PSoC

ACRONYMS

Application Programming Interface. (p. 7)
Central Processing Unit. (p. 55)

Digital-to-Analog Converter. (p. 85)
Device Firmware Upgrade. (p. 66, 67)
Do-It-Yourself. (p. vi, 92)

Electronic Speed Controller. (p. 73)

Field-Programmable Analog Array. (p. 54)
Field-Programmable Gate Array. (p. 6, 54, 60)

General Purpose Input/Output. (p. xvi, xvii, 62, 63, 75, 76, 79, 80, 82, 100, 102,
103,110,112, 114)

Hardware Attached on Top. (p. 22)
Hardware Attached on Top. (p. 98)
Human-Computer Interaction. (p. i, viii, 2, 3, 26, 54)

Integrated Circuit. (p. 53, 81, 85, 144)

Integrated Development Environment. (p. 97, 137)
Internet of Things. (p. 97-99, 134)

Intermediate Representation Layer. (p. 99)

Microcontroller Unit. (p. 17, 18)

Printed Circuit Board. (p. xix, 6, 15-17, 32, 40, 41, 43, 53, 65, 78, 144-146)
Peripheral Component Interconnect. (p. 122)

Power Delivery. (p. 60)

Programmable Input/Output. (p. 55)

Programmable Peripheral Interconnect. (p. 55)

programmable system-on-chip. (p. 54, 60)

xxiii

Acronyms

PWM Pulse-Width Modulation. (p. xvi, 72-75, 80-82)

RISC Reduced Instruction Set Computing. (p. 100)
RTOS Real-Time Operating Systems. (p. 97)

SMD Surface-Mounted Device. (p. 40, 41)

SoC System-on-Chip. (p. xvi, xvii, 60-64, 66, 71, 79, 82, 83)
SWD Serial Wire Debug. (p. 66)

SWS Single Wire Serial. (p. 57)

TUI Tangible User Interface. (p. 3, 4)

1

INTRODUCTION

1.1 Introduction to Physical Computing

In the domain of Human-Computer Interaction (HCI), Physical Computing refers to the
process of making ubiquitous devices and represents a transformative approach to our
engagement with technology. The field of Physical Computing is dedicated to creating
systems that bridge the digital and physical world, enabling interactive environments
that can sense, process, and actively respond to human input and environmental
conditions. By integrating software behavior with responsive hardware, physical
computing allows for the creation of systems that not only compute but also have the
ability to interact with the real world in meaningful ways.

Compared to general-purpose computing systems, ubiquitous computing focuses on
dedicated devices designed for specific functions rather than broad, versatile computing
tasks. This specialization allows these devices to be seamlessly embedded into our
environments, facilitating contextually relevant and intuitive interactions, like physical
inputs and gestures, rather than through traditional interfaces like keyboards and screens.
For example, a smart device attached to a refrigerator can monitor its contents, providing
timely reminders or suggestions based on what is inside '. Similarly, Amazon Dash
buttons 2 simplify the reordering process for frequently used products by embedding
this specific functionality within the user’s physical environment. This approach to
computing—where devices are purpose-built and integrated into everyday settings—
enhances user experience by making technology more intuitive and immersive.

Over the years, the advancement of physical computing introduced a remarkable
range of prototyping tools and platforms aimed at making physical computing more
accessible to a broader audience. This democratization has considerably reduced the
barriers to creating interactive and responsive systems. For example, the introduction of
development platforms, such as Arduino [Arduino, 2022] and micro:bit [microbit, 2022],
have made it easier for hobbyists, educators, and innovators to design and implement

Thttps://www.samsung.com/us/explore/family-hub-refrigerator/overview/
2 https://developer.amazon.com/virtual-dash-button-service

https://www.samsung.com/us/explore/family-hub-refrigerator/overview/
https://developer.amazon.com/virtual-dash-button-service

1.2. INTERACTION MODALITIES IN PHYSICAL COMPUTING

interactive systems without the need for extensive programming or electronics expertise.
They have opened the door to a wide range of applications, from wearable technology
that monitors and responds to bodily functions [Seneviratne, 2017] to interactive art
installations that change based on audience participation [Guljajeva, 2022], and smart
home devices that adjust based on environmental conditions or user preferences [Garg,
2022].

However, the increasing diversity in these tools and platforms has also introduced
significant challenges. The variety in technical specifications—including processor
speed, memory, and supported input/output modalities—-is as wide as differences
in design, features, and target audiences. This diversity significantly impacts the user
experience during prototyping, with each system offering different strengths and weak-
nesses depending on its intended application. For novices and experts alike, navigating
this landscape of prototyping tools and platforms is challenging, as documentation is
often sparse or hard to comprehend and thus requires sufficient technical knowledge.
Furthermore, users must consider compatibility issues between hardware and software
components, which may involve varying communication protocols, pin configurations,
and power requirements. These challenges are particularly daunting for newcomers to
the field.

1.2 Interaction Modalities in Physical Computing

Tangible User Interfaces (TUIs) represent a significant advancement in bridging the
digital and physical worlds, especially in the context of HCI. TUIs allow users to interact
with digital systems through physical objects, making abstract digital concepts more
concrete and accessible. This modality aligns with the goals of physical computing,
which seeks to create interactive systems that respond to real-world inputs. TUIs provide
a tangible form for building prototypes, enabling users to manipulate objects directly,
thereby offering a more hands-on approach than purely software-based tools.

However, despite their benefits, TUIs present several challenges in the context of
physical prototyping. One of the main challenges is the inherent limitation in what can
be built using TUIs. While they are excellent for demonstrating concepts and providing
interactive feedback, the scope of what can be prototyped is often constrained by the
predefined functionalities of the tangible objects themselves. Unlike software-based
tools that can be easily updated or reprogrammed to handle new tasks, TUIs are often
bound by their physical form, which can limit their flexibility and adaptability in rapidly
evolving prototyping scenarios.

Another significant challenge with TUIs is the difficulty of integrating various tangible
interfaces into a cohesive system. As with many electronics prototyping tools, TUIs often
operate within their ecosystems, designed to work seamlessly with specific hardware
and software components. Integrating TUIs from different systems or combining them

CHAPTER 1. INTRODUCTION

with other prototyping tools can be complex and requires a deep understanding of
both the hardware and software involved. This fragmentation creates barriers for users,
especially those who are not experts in electronics or programming, making it difficult
to achieve a unified prototyping workflow that leverages multiple TUIs.

Furthermore, the integration of TUIs with other interaction modalities, such as sensor-
driven environments or gesture recognition systems, can introduce additional technical
complexities. These systems often require custom solutions for communication pro-
tocols, power management, and data synchronization, adding layers of difficulty to
the prototyping process. As previously discussed, these challenges are exaggerated by
the diversity of available tools and platforms, each with its specifications and compati-
bility issues, further complicating the integration of TUIs into a seamless prototyping
ecosystem.

1.3 Exploring the Diversity of Physical Computing Platforms

The domain of physical computing has rapidly evolved, democratizing the process of
technology creation and experimentation. This evolution has welcomed a diverse group
of enthusiasts, ranging from hobbyists and educators to professional engineers, each
bringing their unique perspectives and skills to the world of electronics prototyping. At
the core of this transformation is an expansive range of hardware and software tools,
each with distinct features, capabilities, and intended applications. This wide spectrum
of prototyping resources is designed with a fundamental goal to cater to the varied
needs of users with different levels of expertise and project ambitions.

This section underscores two fundamental challenges in physical prototyping: hardware
assembly and software development. By highlighting the distinctions between hardware
and software diversities within physical computing, this section explores how these
variations empower creators and introduce prototyping difficulties.

1.3.1 Assembling Hardware: A Tangible Foundation

Physical computing involves the process of selecting and connecting various electronic
components to build a functioning system. This process is key to creating devices
that interact with the physical world. Physical prototyping involves a combination of
microcontrollers, sensors, actuators, and other electronic components that work together
to execute specific tasks or actions based on programming logic. With the increasing
popularity of physical computing, hardware assembly has become more and more
accessible to a wider audience. While traditional tools, like breadboards and jumper
wires, require users to connect components manually, they require a solid understanding
of electronics. This manual process can be daunting for beginners who must navigate
the complexities of circuit design and component functionality [Mellis, 2016].

Breakout boards offer a solution to these challenges. They are designed to make small

1.3. EXPLORING THE DIVERSITY OF PHYSICAL COMPUTING PLATFORMS

or complex components easier to use by embedding all required components and
extending their connections to a larger, more manageable board. This simplification
allows users to focus on the essentials of their project without getting bogged down
by intricate wiring details. Examples include the Adafruit BNOO055 [Adafruit, 2022]
and ESP8266 [Espressif, 2022a] breakout boards, incorporating an accelerometer and
WiFi chip. However, breakout boards often come from different manufacturers with
varying specifications—such as voltage and interface types—posing compatibility issues.
Additional converter boards like the SparkFun Buck-Boost Converter® and Adafruit
FT232H breakout board* help overcome these obstacles, yet selecting and properly
integrating these components still requires electronics knowledge.

Further democratizing prototyping, integrated modular platforms like .NET Gad-
geteer [Hodges, 2013], littleBits [Bdeir, 2009], and Lego Mindstorms [Lego, 2022] have
been developed. These systems consist of a set of modules specifically designed to
work together and allow users to easily connect modules without delving into technical
datasheets or sourcing additional parts. While these platforms simplify electronics for
newcomers, they may limit the customization and flexibility sought by experienced users
or specific projects, highlighting a balance between ease of use and project customization.

1.3.2 Developing Software: Bringing Hardware to Life

The software development aspect of embedded systems is fundamental for assigning
behavior to hardware assemblies. Typically, software development involves integrating
several external elements like low-level drivers and high-level libraries. Low-level
drivers are key for the hardware-software interaction and handle the communication
between hardware components at a binary and electrical level. This includes managing
hardware-specific registers and communication protocols. For instance, the driver for
the SSD1306 OLED display controls the hardware registers over the 12C protocol to
update pixels. These drivers ensure that users are not confronted with hardware-specific
registers that often have to be assigned in a specific order and the detailed timings
and intricacies of communication protocols. High-level libraries offer additional layers
of abstraction on top of the driver. By offering simpler interfaces, the complexity of
hardware interaction is significantly reduced, making it more accessible and reducing
the learning curve. For example, to display text on the SSD1306 display, developers can
utilize the features that convert each character into the pixel representation required by
the display.

While drivers and libraries significantly lower the threshold for programming electronic
systems, they are often entangled and available as a single software solution for
interacting with a component or set of components. For instance, software solutions,

3 https://www.sparkfun.com/products/15208
4 https://www.adafruit.com/product/2264

https://www.sparkfun.com/products/15208
https://www.adafruit.com/product/2264

CHAPTER 1. INTRODUCTION

such as the DHT sensor library® developed for the DHT11 temperature sensor®, are not
compatible with the DS18B20 temperature sensor” as these components use different data
reading methods and communication protocols despite offering similar functionalities.
Similarly, the Adafruit GFX graphics library® is primarily designed for displays using
SPI. Driving I2C-based displays, such as the SSD1306, presents significant challenges.
Moreover, many libraries are designed with a specific microcontroller or platform in
mind, like Arduino [Arduino, 2022], making them incompatible with other platforms
such as micro:bit [microbit, 2022].

The tight coupling of drivers and libraries presents significant challenges for developers
who must find the most suitable software solution from a vast set of similar yet often
incompatible sets of available solutions. Equally important is the burden that comes
with maintaining these software solutions. Engineers need to ensure that new hardware
components and microcontrollers are compatible with a wide variety of existing software
solutions to guarantee compatibility with existing offerings.

Jacdac [Devine, 2022] partially addresses this problem, as it offers a communication
protocol that enables developers to interface with electronic components via services.
These services effectively split application logic from hardware but introduce additional
translation steps to map functions of hardware components onto corresponding generic
services and translate communication messages to the Jacdac protocol. This translation
often results in the loss of features unique to individual components, which aren’t
captured by the generic services and may also introduce latencies.

1.3.3 Bridging Hardware and Software: The Role of Hardware and Software
Glue

Navigating the complexities of physical computing, the concepts of hardware glue and
software glue play pivotal roles in bridging gaps between components and functionalities,
enabling seamless integration and interaction within projects. These concepts, while
distinct, work in tandem to facilitate the creation of complex systems from disparate
parts. Here, we introduce and explore the intricacies of hardware and software glue,
shedding light on their significance in electronics prototyping.

Hardware glue refers to the physical components and circuitry used to connect various
electronic modules and peripherals in a system. This includes everything from simple
wires and solder bridges to voltage and protocol converters and more complex pro-
grammable devices like Field-Programmable Gate Arrays (FPGAs) or custom Printed
Circuit Boards (PCBs) designed to interface different modules. The primary function
of hardware glue is to ensure that components, which may not have been originally
designed to work together, can communicate and function as part of a cohesive system.

5https://www.arduino.cc/reference/en/libraries/dht-sensor-1library/

6 https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf
7https://www.analog.com/media/en/technical-documentation/data-sheets/ds18b20.pdf
8 https://learn.adafruit.com/adafruit-gfx-graphics-1library/overview

https://www.arduino.cc/reference/en/libraries/dht-sensor-library/
https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ds18b20.pdf
https://learn.adafruit.com/adafruit-gfx-graphics-library/overview

1.3. EXPLORING THE DIVERSITY OF PHYSICAL COMPUTING PLATFORMS

It addresses challenges such as incompatible voltage levels, differing communication
protocols, and physical connection mismatches.

Software glue, on the other hand, comprises the digital layers—drivers, Application
Programming Interfaces (APIs), middleware, and custom scripts—that facilitate effective
communication and data exchange between disparate software entities or between
hardware components and the software controlling them. It is the invisible thread that
weaves through the elements of a physical computing system, enabling components
to communicate with each other and the user’s application. Software glue abstracts
the complexities of direct hardware manipulation, providing developers with a more

intuitive means of defining behavior and interactions within their systems.

The integration of hardware and software glue is crucial for lowering the barriers to
developing electronics projects and products. Together, they enable developers to create
systems that are greater than the sum of their parts, combining off-the-shelf components
and custom solutions into fully functional prototypes or end-user products. In essence,
hardware and software glue collectively form the backbone of modern prototyping and
embedded systems design, allowing for rapid development, testing, and deployment
of innovative electronic solutions. They address the inherent complexities of working
with a diverse range of components and technologies, making technology creation more
accessible and versatile for developers of all skill levels.

While hardware and software glue are essential tools in physical computing, their
use introduces a potential efficiency trade-off. These trade-offs stem from the balance
between ease of integration and system efficiency. On one hand, hardware and software
glues abstract away the complexity of interfacing diverse components and technologies,
significantly reducing development time and making prototyping more convenient.
This abstraction enables developers to focus on design and functionality rather than the
intricacies of hardware-software communication.

However, the abstraction layers introduced by hardware and software glue can lead to
increased computational overhead. For example, software glue that abstracts driver
functionality may need additional processing to translate high-level commands into low-
level hardware actions, consuming more CPU cycles and potentially increasing response
times. Similarly, hardware glue designed to standardize component connectivity might
limit the direct control over hardware specifics, possibly affecting the precision and
efficiency of the system’s operation.

In essence, while software and hardware democratize electronics prototyping by
lowering technical barriers, they may also impose constraints on system performance
and efficiency. Developers must, therefore, weigh the benefits of rapid development
and ease of use against the potential for decreased system optimization and increased

resource consumption.

CHAPTER 1. INTRODUCTION

1.4

Research Questions

As the landscape of electronics prototyping evolves, it is crucial to understand the

unique challenges faced by users and how these challenges impact the usefulness and

accessibility of prototyping tools. This dissertation aims to explore several key aspects

of electronics prototyping to enhance our understanding and development of more

inclusive and versatile prototyping solutions. The research questions guiding this

dissertation are as follows:

Q1

Q2

Q3

What are the primary challenges faced by users of varying expertise levels
when selecting and integrating hardware and software components for physical
computing projects?

This question aims to uncover the specific difficulties encountered by different user
groups, ranging from beginners to advanced users, in the electronics prototyping
process. Understanding these challenges is crucial for developing tools and
methodologies that are accessible and useful for a broad audience.

How do the concepts of hardware glue and software glue contribute to lowering
the barriers to physical computing, and what are the trade-offs in terms of
system performance and efficiency?

By exploring the roles of hardware and software glue—components that facili-
tate the integration of disparate systems—this question seeks to evaluate their
effectiveness in simplifying the prototyping process. It also examines the poten-
tial downsides, such as decreased system performance or increased complexity,
associated with their use.

What strategies can be developed to address compatibility issues between hard-
ware and software components in physical computing, particularly concerning
communication protocols, pin configurations, and software drivers?

This question focuses on finding solutions to the fragmentation and compatibil-
ity issues that often arise when integrating various components and tools in a
prototyping environment. The aim is to identify or develop strategies that can
streamline the integration process, making it more straightforward for users to
combine multiple elements within their projects.

1.5. RESEARCH GOALS

1.5 Research Goals

This dissertation aims to enhance the electronics prototyping workflow by looking
into the concepts of hardware and software glue, making it more accessible for a wide
range of users with different experience levels, both in hardware design and software
development. This work is driven by several specific research goals, each contributing
to the broader vision of democratizing technology creation through improved tools,
frameworks, and knowledge.

Building on the research questions, the goals of this dissertation are to address the
identified challenges in electronics prototyping and propose solutions that study and en-
hance the ease-of-use, efficiency, and versatility of prototyping tools and methodologies.
The key research goals are as follows:

G1 Mapping and Understanding the Electronics Prototyping Domain

This goal involves an extensive analysis of the current spectrum of electronics pro-
totyping toolkits, documenting their functionalities, advantages, and limitations.
The aim is to establish a comprehensive framework that systematically categorizes
these tools, making it straightforward for users of varying expertise to navigate
through the applications and focus areas of existing toolkits, thereby streamlining
the prototyping process to better meet a wide range of user needs. Furthermore,
this goal is targeted at uncovering the diverse experiences and preferences among
prototyping tool users by exploring the various challenges encountered, tools
preferred, and strategies employed by users to materialize their ideas. Insights
gained here will inform the creation of tailored solutions designed to address the
wide range of user needs and to streamline the prototyping process. This goal
directly addresses research question Q1.

G2 Bridging Hardware Compatibility and Integration
Aligning with questions Q2 and Q3, this goal is dedicated to developing solutions
that address the compatibility challenges and technical complexities involved in in-
tegrating various hardware components within electronics prototyping workflows.
By introducing innovative approaches to hardware integration, this research seeks
to simplify the process of combining disparate hardware elements, enhancing the
overall prototyping efficiency.

G3 Bridging Software Interactions for Prototyping
Complementing the hardware-focused goal in questions Q2 and Q3, this objective
concentrates on creating and implementing solutions that simplify software
interactions within the prototyping process. It tackles the hurdles associated
with software compatibility, aiming to develop integrated software solutions that
facilitate seamless communication and interaction between various applications
and hardware devices.

CHAPTER 1. INTRODUCTION

1.6 Contributions

This dissertation presents advancements in electronics prototyping, making electronics
prototyping more accessible for novice users. It delves into the vast range of existing
prototyping tools, identifies crucial gaps, and introduces solutions to overcome these
challenges.

The key contributions are outlined as follows. Figure 1.1 summarizes how the contribu-
tions link to the different research questions and goals.

1. Development of a Comprehensive Taxonomy for Electronics Prototyping Toolk-
its [Lambrichts, 2021]: We provide a structured categorization of electronics
prototyping toolkits, distinguishing them by design, features, and intended user
demographics. The taxonomy facilitates a clearer understanding of the prototyp-
ing landscape, guiding users and developers in selecting the most appropriate
tools for their specific needs. This contribution addresses goal G1.

2. Analysis of User Priorities and Prototyping Strategies [Lambrichts, 2021]:
Through a detailed analysis, this work uncovers the preferences and approaches
users of different backgrounds have towards electronics prototyping toolkits. This
analysis not only highlights the diverse needs and challenges users face but also
provides a foundation for developing more user-centered prototyping tools and
resources. This contribution addresses goal G1.

3. Hardware Compatibility through CircuitGlue [Lambrichts, 2023]: CircuitGlue is
an electronic converter board that facilitates how heterogeneous components are
interconnected. By enabling software programmable pin assignments, protocol
translations, and voltage conversions, CircuitGlue helps creators integrate diverse
off-the-shelf components into their projects, thereby simplifying the hardware
assembly process. This capability lowers the barrier to entry for those new to
electronics, as it reduces the complexity traditionally associated with hardware
prototyping. This contribution addresses goal G2.

4. Software Compatibility through LogicGlue [manuscript submitted]: LogicGlue
addresses the complexities of driver compatibility and programming in embedded
systems. It introduces a framework for creating platform-independent drivers,
removing the dependency on specific microcontrollers or programming languages.
LogicGlue streamlines the development process, ensuring seamless interfacing
with electronic components and preserving the full range of their functionalities.
This contribution addresses goal G3.

10

1.6. CONTRIBUTIONS

Mapping and ; Bridging Hardware = Bridging Software

Understanding . Compatibility Interactions

at. X Chapter 2 + 3:

What challenges do different users face Taxonomy and Survey

in integrating hardware and software?

Q2.

How do hardware and software glue Chapter 4: Chapter 5:
simplify integration, and what are the CircuitGlue LogicGlue
trade-offs?
as. Chapter 4 Chapter 5

. T i apter 4: apter 5:
What stcrategles so!ve compatibility issues e LogicGlue
in physical computing?] :

Figure 1.1: This figure illustrates how the research questions and goals relate to the contributions made in
this dissertation.

In evaluating the contributions of this dissertation, it is important to consider established
frameworks that assess the quality and effectiveness of electronics toolkits. Myers’
concepts [Myers, 2000] of “high ceiling,” “low threshold,” “large walls,” and “path of
least resistance” provide a valuable lens for evaluating how toolkits can cater to a wide
range of users and project complexities. A high ceiling allows advanced users to create
complex projects, while a low threshold ensures that beginners can easily start using
the toolkit. Large walls represent the toolkit’s capacity to support a broad spectrum
of features, and the path of least resistance highlights intuitive design that helps users
achieve their goals efficiently.

Additionally, Olsen’s framework [Olsen, 2007] emphasizes expressiveness, ease of
learning, and support for creativity as critical aspects for evaluating toolkits. These
criteria focus on the toolkit’s ability to support innovative and diverse projects, facilitate
user learning, and encourage creative exploration.

11

CHAPTER 1. INTRODUCTION

1.7 Dissertation Outline

This dissertation is structured into a series of chapters dedicated to exploring differ-
ent aspects of electronics prototyping. This structure starts from evaluating current
prototyping tools and methodologies to introducing novel solutions to addressing the
identified gaps. Here is a detailed overview of the focus and contributions of each
chapter:

CHAPTER 2: Established Approaches to Electronics Prototyping

This chapter explores established approaches to electronics prototyping, examining their
benefits, limitations, and the potential for hybrid solutions that leverage the strengths of
each type. By understanding the spectrum of prototyping methodologies, users can
better navigate the choices available to them, fostering innovation and creativity in their

projects.

CHAPTER 3: Finding Common Ground

This chapter delves into the vast range of toolkits available for prototyping interactive
and ubiquitous electronic devices. Despite the easy availability of their technical
specifications, these toolkits exhibit a wide variety of designs, features, and user focus,
each with unique strengths and limitations. Through a newly developed taxonomy, this
chapter thoroughly analyzes these systems beyond their technical aspects, incorporating
findings from an online survey to shed light on user preferences and prototyping
approaches. In addition, this chapter details the results of an online survey evaluating the
taxonomy’s real-world relevance. This provides insights into the electronics prototyping
practices across a diverse audience, including hobbyists, educators, and professionals.
This survey seeks to understand user preferences, tool usage patterns, and prototyping
challenges, thereby validating the taxonomy and identifying prevalent trends and gaps
in electronics prototyping.

CHAPTER 4: Plug-and-Play Hardware Through CircuitGlue

Responding to gaps identified in the previous chapter, CircuitGlue is introduced as an
electronic converter board designed to simplify the interconnection of diverse electronic
components. It features an eight-pin software programmable header, allowing for
flexible configurations in software to support a variety of connections. This chapter
showcases CircuitGlue’s role in streamlining hardware assembly and explores new
prototyping workflows it unlocks. A preliminary user study further examines its
usability, particularly for individuals new to electronics, offering valuable insights into
its practical applications and user experience.

12

1.7. DISSERTATION OUTLINE

CHAPTER 5: Plug-and-Play Software Drivers Through LogicGlue

LogicGlue emerges as a solution to the challenges of compatibility and programming
intricacy in embedded system development. It introduces a platform-independent
driver specification format, enabling the creation of versatile drivers that are not tied
to any specific microcontroller or programming language. Supported by a visual
programming interface and a comprehensive interpreter, LogicGlue facilitates straight-
forward interfacing with electronic components, ensuring the preservation of hardware
functionality without the trade-offs typically associated with existing solutions. This
chapter evaluates how LogicGlue facilitates software development for individuals with
various backgrounds by ensuring software adaptability across different components
and platforms.

CHAPTER 6: On-going Research into Unified Plug-and-Play Programming

Building on the foundations laid by CircuitGlue and LogicGlue, this chapter investigates
their combined potential to create a plug-and-play ecosystem for electronic prototyping.
It highlights how their integration enables developers to seamlessly incorporate various
electronic components into their projects, removing barriers caused by compatibility
and programming complexities. This unified approach further democratizes electronics

prototyping, allowing users of all backgrounds to participate.

CHAPTER 7: Discussion and Future Work

An overarching discussion ties together the findings and implications from each chapter,
examining the collective impact of our classification, CircuitGlue, and LogicGlue, within
the broader context of electronic prototyping toolkits. This chapter reflects on the broader
implications of this work for the field of embedded systems, suggesting pathways for
future exploration and development in making prototyping more accessible.

CHAPTER 8: Conclusion

The final chapter synthesizes the key insights and contributions of the dissertation,
highlighting the solutions presented to simplify the electronics prototyping process.

13

2

EsTABLISHED APPROACHES TO ELECTRONICS

ProTOTYPING

Motivation

To lay the groundwork for this dissertation, this chapter presents a literature review
to analyze general programming styles used in electronics prototyping. This chapter
discusses the key findings of this literature review and introduces five distinct prototyp-
ing types that are determined by the tools and platforms used during prototyping (G1).
These findings serve as the foundation for a comprehensive prototyping framework.

2.1 Introduction

Since the introduction of physical prototyping, engineers have sought ways to accelerate
the design, testing, and assembly of interactive electronic devices. As described in
the previous chapter, these tools and platforms have subsequently transitioned to a
broader audience of individuals, trying to democratize the field of physical computing.
Blikstein [Blikstein, 2015] offers a historical analysis of 30 years of developments in
electronics prototyping toolkits and identifies three levels of abstraction. This chapter
builds on Blikstein’s categorization to establish a revised and expanded framework in
response to the ever-changing landscape of physical computing. To avoid confusion, we
refer to “Types’ of electronics prototyping rather than Blikstein’s ‘Levels’”.

This chapter is based on the conference proceedings paper “A Survey and Taxonomy
of Electronics Toolkits for Interactive and Ubiquitous Device Prototyping”, which
was published in the “Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies” [Lambrichts, 2021]. The paper was presented virtually at the
IMWUT conference in 2021 and received a Best Presentation Award.

14

2.2. TYPES OF PROTOTYPING

2.2 Types of Prototyping

In the following sections, we introduce five distinct prototyping types that are based
on the unique characteristics of electronics prototyping toolkits. Figure 2.1 provides a

summary of these types.

PE1

Discrete

Components

TYPE 2a

Integrated
Microcontroller
Boards

TYPE 2b

Breakout Boards
and Modules

TYPE 2c

Integrated
Development
Boards

TYPE 3

Integrated
Modular Systems

Electronics Discrete Microcontroller Specialized Boards with built- Complete sets
Components components: development modules: in sensors or designed to work
resistors, capacitors, boards: Arduino, sensors, actuators, actuators: together:
transistors, ... Teensy, Raspberry WiFi modules, ... micro:bit, Circuit Jacdac, .NET
Pi, ... Playground Express, Gadgeteer, ...
Flexibility Low Very Low
Full control over Functionality Specialized Built-in Limited to
design and expandable with functionalities, functionalities are availability of
components additional hardware requires integration very limited, but ecosystem
components with other types expandable with functionalities
additional
components
Ease of Use Low
Requires in-depth Simplifies Simplifies hardware Ready to interact Fool-proof assembly
electronics microcontroller use integration but with the physical and operation
knowledge but needs additional often requires world out of the box
components for full solving compatibility
functionality challenges
Prototyping Slow
Speed Manual assembly Requires Integration often Immediate start Expedited
and testing, error- interconnecting requires adding with no initial prototyping by plug-
prone external conversion assembly and-play experience
components components
Knowledge High
Required Significant Basic Requires Minimal electronics Designed for
electronics microcontroller and understanding of knowledge needed, beginners with no
knowledge needed electronics specific components but moderate when electronics
knowledge required and protocols connecting background
additional
components
Targeted Advanced users Hobbyists, Hobbyists, Beginners and Beginners,
User Groups educators, and users educators, and users educators looking educators, and users
needing convenient needing for efficient entry prioritizing ease of

prototyping
solutions

functionalities,
users expanding
Type 2a or 2¢

use over
customization

Figure 2.1: Summary of the five prototyping types we defined. Referred platforms are Arduino [Arduino,
2022], Teensy [Teensy, 2021], Raspberry Pi [Pi, 2022b], micro:bit [microbit, 2022], Circuit Playground
Express [Adafruit, 20241, Jacdac [Devine, 2022] and .NET Gadgeteer [Hodges, 2013].

TYPE 1: Prototyping with Discrete Components

Blikstein’s “Level 1” electronics is based on discrete components—the same components
that are used in the mass production of electronic devices. In this thesis, we refer to
this approach to prototyping as TYPE 1. The key to using production-ready electronic
components for prototyping is making the desired electrical connections without needing
to solder them to a custom-designed Printed Circuit Board (PCB). A common approach

15

CHAPTER 2. ESTABLISHED APPROACHES TO ELECTRONICS PROTOTYPING

Figure 2.2: [llustration of a set of discrete components, considered TYPE 1 prototyping.

to achieve this is to push the leads of components into a solderless breadboard.

Mellis et al. [Mellis, 2013] advocate for TYPE 1 prototyping since it offers form-factor
freedom and is closest to current engineering practices. With a solderless breadboard,
it’s also quick and easy to make changes as a design iterates. However, although it
is relatively easy to physically plug and unplug components, making sure that the
connections are exactly as planned can be fiddly and error-prone, and the resulting
“rat’s nest” of circuitry is often susceptible to damage.

In an effort to facilitate TYPE 1 electronics prototyping, product designers and re-
searchers have built various tools. These either provide novel ways for connecting
discrete components together, for example, Snap Circuits [Circuits, 2021], or they help
novice engineers detect and diagnose problems [Drew, 2016]. In recent years, there is
also an increased interest in using novel fabrication technologies to interconnect discrete
electronic components. Researchers have explored novel approaches ranging from
conductive pens [Hodges, 2014] and inkjet printing conductive traces on paper [Kawa-
hara, 2013] to techniques for making soft [Hamdan, 2018] and stretchable [Nagels, 2018]

circuits.

Despite the innovations listed above, two significant drawbacks remain when using
TYPE 1 prototyping. Firstly, if multiple copies of a circuit are needed, the entire artifact
must be built from scratch each time, which can be time-consuming. Secondly, and often
more significantly, prototyping with discrete components requires significant knowledge
of electronics, slowing down the process of creating and iterating a prototype.

TYPE 2: Embedded Hardware Boards

Moving beyond the use of individual components for prototyping, many prototyping
practices involve leveraging pre-assembled Printed Circuit Boards (PCBs), including
specialized modules and development boards. Blikstein [Blikstein, 2015] categorizes this

16

2.2. TYPES OF PROTOTYPING

approach as ‘Level 2’ prototyping, characterized by the use of integrated microcontroller
development boards. These are PCBs centered around a specific Microcontroller Unit
(MCU), equipped with additional components that facilitate operation and provide easy
access to essential functionalities. In this thesis, we delve deeper into the nuances of
TYPE 2 prototyping, distinguishing it into three distinct subcategories to provide a more

detailed exploration of the landscape.

TYPE 2a: Integrated Microcontroller Development Boards

Figure 2.3: Illustration of a set of microcontroller development boards, considered TYPE 2a prototyping.

The first subdivision of TYPE 2 prototyping, labeled as TYPE 2a, focuses on the utiliza-
tion of microcontroller development boards (Figure 2.3). Example TYPE 2a products
include the Arduino Uno [Arduino, 2022; Banzi, 2008], Raspberry Pi [Pi, 2022b], the
STM32 discovery [STMicroelectronics, 2021], Teensy [Teensy, 2021], and the TI Launch-
pad [Launchpad, 2021]. These integrate components for power delivery, programming,
communications, and basic user interaction via regulators, pin headers, USB ports, push
buttons, and LEDs. TYPE 2a also encompasses more featured microcontroller develop-
ment boards such as the Raspberry Pi [Pi, 2022b] and BeagleBone [BeagleBone, 2021].
These devices embed networking, mass storage, and additional hardware features like
USB host and HDMI support and are often referred to as single-board computers as

they function as stand-alone devices.

TYPE 2a prototyping is well-established in the electronics profession because, compared
to the TYPE 1 approach, it simplifies experimentation with microcontrollers. However,

17

CHAPTER 2. ESTABLISHED APPROACHES TO ELECTRONICS PROTOTYPING

for many prototype electronic devices, the microcontroller is only half of the story: any
given design typically requires integration with components that are not present on the
ready-made microcontroller development board. This shortcoming can, of course, be
addressed by combining TYPE 2a with TYPE 1-wiring the microcontroller development
board to a solderless breadboard with the necessary additional components.

1

-

TYPE 2b: Breakout Boards and Wireless Modules

moEER e EE
(HEBHE O g m

Figure 2.4: [llustration of a set of breakout boards, considered TYPE 2b prototyping.

Another approach that has become popular in the past decade or two is the use of
breakout boards and wireless modules. These are similar to microcontroller development
boards but are typically smaller, and rather than featuring an MCU, they contain a
particular chip such as an accelerometer, regulator, or WiFi radio along with enough
components to support its operation. Blikstein [Blikstein, 2015] does not label these
explicitly, but we believe they form an interesting category of their own, which we refer
to as TYPE 2b electronics prototyping tools (Figure 2.4).

Specific examples of TYPE 2b products include Adafruit’s Bosch BNO055 sensor
breakout board[Adafruit, 2022], which embeds sensor fusion and an 12C interface, and
ESP8266/ESP32 WiFi modules[Espressif, 2021]. Several groups of TYPE 2b modules are
worth a particular mention: Seeed’s Grove system [Grove, 2021], MikroElektronika’s
Click boards [Mikroe, 2021]; Digilent’s Pmod modules [Pmod, 2021]; SparkFun’s Qwiic
modules [SparkFun, 2021a] and Adafruit’'s STEMMA and STEMMA QT [Adafruit,
2021d]. These are all ecosystems of modules that are somewhat compatible with each
other, making it relatively easy to interface several of them to a given microcontroller or
to move between modules with different functionalities.

As with TYPE 2a components, a critical aspect of TYPE 2b components is that they are

18

2.2. TYPES OF PROTOTYPING

not sufficient to build a prototype; you need to combine them with TYPE 2a and/or
TYPE 1 electronics. Although both TYPE 2a and TYPE 2b products may support
common protocols like I12C, SPI, and UART, they are typically manufactured by different
companies, and their operating voltage, physical connections, and /or communications
speeds and protocols are not necessarily compatible. Therefore, selecting and interfacing
components appropriately still requires a good understanding of electronics.

In summary, the main advantage of TYPE 2 electronics prototyping over TYPE 1 is speed
and robustness—because fewer connections have to be specified and hand-made. The
biggest disadvantage is reduced flexibility.

TYPE 2c: Integrated Development Boards

Figure 2.5: Illustration of an integrated development board, considered TYPE 2c prototyping. This figure
shows the micro:bit [microbit, 2022] platform.

TYPE 2c platforms, as illustrated by devices like the micro:bit [microbit, 2022; Austin,
2020] and Circuit Playground Express [Adafruit, 2024], stand out for their all-in-one
design that incorporates sensors and actuators directly onto the development board
(Figure 2.5). This approach provides users with a device that is ready to interact with the
physical world right out of the box, eliminating the need for initial hardware assembly.
These boards serve as an accessible and straightforward gateway into the world of
electronics prototyping, making them especially suitable for beginners and educational
purposes.

However, while TYPE 2c boards facilitate a rapid start in prototyping with their built-

19

CHAPTER 2. ESTABLISHED APPROACHES TO ELECTRONICS PROTOTYPING

in features, they are typically very limited in the range of functionalities they offer.
When projects demand more specialized capabilities not provided by the onboard
features, these boards encounter limitations similar to those faced by TYPE 2a systems
in integrating additional functionalities.

Overall, TYPE 2c boards strike a balance between ease of use and the potential for project
expansion. They offer a practical solution for individuals and educators looking for an
efficient entry point into electronics prototyping, with the flexibility to scale projects as

needed.

TYPE 3: Integrated Modular Systems

Figure 2.6: Illustration of an integrated modular system, considered TYPE 3 prototyping. This fiqure
shows the Jacdac [Devine, 2022] platform.

Consistent with Blikstein’s ‘Level 3’, our definition of TYPE 3 electronics prototyping
covers toolkits that consist of a complete set of modules specifically designed to work
together without needing any other components (Figure 2.6). They often comprise a
processing module combined with various input and output (I/0O) modules. Many
TYPE 3 platforms offer keyed connectors with poka-yoke constraints or use modules that
communicate wirelessly to make the assembly fool-proof. Popular examples include
NET Gadgeteer [Hodges, 2013], Phidgets [Greenberg, 2001], littleBits [Bdeir, 2009], Lego
Mindstorms [Lego, 2022] and SAM Labs [Labs, 2021].

TYPE 3 platforms simplify and expedite electronics prototyping compared to TYPE 2
because there is no need to find third-party compatible components and work out how
to connect them. Blikstein [Blikstein, 2015] noticed that TYPE 2 electronics expose more
details of embedded electronic components compared to TYPE 3. For these reasons,
TYPE 3 platforms are frequently used in educational and leisure settings as they allow
users to get up to speed and experience success without knowing many details of the

20

2.3. BRIDGING BETWEEN TYPES

underlying electronics. However, this also means an important factor when selecting a
TYPE 3 platform is the particular set of modules it supports; adding discrete components
or building custom modules is often hard.

Unlike TYPE 2c¢ platforms, which integrate sensors and actuators directly onto the
board for immediate use, TYPE 3’s approach involves selecting and assembling distinct
modules to create a complete prototype. Although this introduces an extra step in the
assembly process, TYPE 3 platforms provide a versatile and modular way to prototype,
allowing for the addition of functionalities as needed. This modular approach offers a
balance between ease of use and the flexibility to tailor the prototype to specific project

requirements.

A notable example of a TYPE 3 platform is SoftMod, which is the result of my master
thesis and was introduced in previous research [Lambrichts, 2020]. SoftMod is a flexible
and modular electronics kit characterized by its soft, magnetic modules (Figure 2.7).
By tracking the topology of connected modules, SoftMod offers simple, immediate
plug-and-play functionality alongside more complex, user-defined behavior. SoftMod
supports constructing two-dimensional and three-dimensional electronic structures,
making it an inviting platform for exploration. The inherent plug-and-play nature
fosters experimentation, while its support for advanced behavior customization and
the ability to create a variety of soft and flexible shapes offers a ground for innovative
interface designs, including wearables and interactive fabrics.

E RGB LEDS
LEDs
Accelerometer
2.
e
& Stack
/ adapter
Battery
Temperature)\
Y F RN b ' Branching
adapter
Wireless L P
o~ / Communication = v
Button

Master Stretchable cable

"'f‘ \
s
e |

AL

Figure 2.7: Overview of all modules within the SoftMod ecosystem.

2.3 Bridging Between Types

The progression from TYPE 1 to TYPE 3 prototyping represents a line from highly flexible
and customizable to more user-friendly but less adaptable systems. TYPE 1 prototyping

21

CHAPTER 2. ESTABLISHED APPROACHES TO ELECTRONICS PROTOTYPING

stands out for its use of discrete components, offering the most flexibility for projects
with unique or complex requirements. However, this method’s reliance on significant
electronics knowledge and circuit assembly can be daunting for beginners, presenting
obstacles due to its complexity and high potential for errors. Moving to TYPE 2, which
includes microcontroller boards (TYPE 2a/c) and breakout boards (TYPE 2b), the pro-
cess of integrating complex functionalities into projects becomes somewhat simplified.
Despite this, challenges such as voltage mismatches and communication protocol dispar-
ities persist, highlighting ongoing compatibility difficulties. TYPE 2c platforms attempt
to streamline the prototyping experience by integrating sensors and actuators directly
onto the board, providing an immediately usable system. However, this convenience
may come at the cost of reduced customization, as predefined functionalities are often
limited. When the need arises to incorporate external components, TYPE 2c platforms
revert to TYPE 2a’s broader but more complex integration process. Transitioning to
TYPE 3 platforms, the focus shifts towards maximizing ease of use through a modular,
plug-and-play design. While this approach significantly lowers the barrier to entry,
it inherently restricts flexibility and customization by confining users within closed
ecosystems, challenging the integration of external or custom components.

Bridging between prototyping types TYPE 1 and TYPE 2 isa common practice that enables
the utilization of the strengths of each approach. For instance, combining TYPE 1’s
discrete components on a solderless breadboard with a TYPE 2a/c microcontroller
development board allows for a flexible and powerful prototyping solution. This
integration seamlessly merges the customizability and granularity of TYPE 1 with
the computational power and ease of use provided by TYPE 2a/c systems. Similarly,
integrating TYPE 2b components with TYPE 2a/c microcontroller development boards
is straightforward and very popular in the maker community, as breakout boards offer
a convenient alternative to discrete components. Moreover, when TYPE 2a platforms
like Arduino [Arduino, 2022], Raspberry Pi [Pi, 2022b], and BeagleBone [BeagleBone,
2021] are used with shields, HATs, and capes (respectively), they effectively move into
TYPE 3. The same is true for some microcontroller development boards that incorporate
sockets for NET Gadgeteer [Hodges, 2013], or Click modules [Mikroe, 2021]. This
compatibility underscores the inherent design of these platforms to be adaptable and
flexible, accommodating a wide range of project requirements without the need for
extensive modifications or complex interfacing solutions.

Challenges become more prominent when attempting to bridge TYPE 2 and TYPE 3
prototyping. The closed ecosystem characteristic of TYPE 3 platforms, designed for
simplicity and ease of use, often comes at the expense of flexibility and openness. This
design philosophy can significantly restrict the ability to incorporate components from
outside the ecosystem, thereby limiting the scope for customization and innovation
within projects. Such constraints necessitate creative solutions and sometimes complex
workarounds to integrate non-native modules or to extend the functionality beyond
what is readily provided by the TYPE 3 system.

22

2.4. TAKING A LOOK INTO THE FUTURE

2.4 Taking alook into the Future

The future of electronics prototyping is arriving at an exciting juncture, with potential
advancements that could significantly enhance how creators approach their projects.
The development of new tools and platforms explicitly aimed at facilitating seamless
transitions and integrations across different prototyping styles is a promising direction.
Such innovations could further democratize the field of electronics design, enabling
individuals—regardless of their technical background or expertise—to harness the
strengths of discrete components, integrated microcontroller boards, breakout modules,
and modular systems cohesively and intuitively.

Imagine a future where creators can effortlessly mix and match components from
TYPE 1’s vast array of discrete elements with TYPE 2’s microcontroller capabilities and
TYPE 3’s modular convenience. Tools that simplify the identification of components
and their specifications could automate much of the integration process, allowing for
unprecedented cross-compatibility. This would expedite the prototyping phase and
enhance the creative process by removing technical hurdles that may hinder innovation.
Moreover, the emergence of these bridging tools could foster a collaborative environment
where knowledge and resources are shared freely across communities. Educational
platforms could leverage these advancements to provide more comprehensive and
hands-on learning experiences, blending theory with practical application and enabling
students to explore the full spectrum of electronics prototyping without being confined
to a single approach.

As the boundaries between different prototyping styles become increasingly blurred, we
might also witness the rise of hybrid platforms combining each type’s best features. These
platforms could offer the flexibility and control of working with discrete components,
the rapid prototyping capabilities of microcontroller boards and breakout modules,
and the user-friendly, plug-and-play experience of integrated modular systems. Such
convergence could lead to a new era of prototyping where the focus shifts from managing
compatibility issues to pushing the limits of what can be created.

In this evolving landscape, the role of the community—makers, educators, professionals,
and hobbyists—will be essential. Feedback from these diverse groups will guide the
development of tools that are not only technically robust but also aligned with the
users’ needs and aspirations. As we move forward, the synergy between technological
innovation and community engagement will undoubtedly fuel rapid growth and
transformation in electronics prototyping, opening up new avenues for exploration and

discovery.

23

3

Finping ComMmMON GROUND

Motivation

As the field of electronics prototyping continues to evolve, bridging the gap between
the expectations of creators and the capabilities of current prototyping tools becomes
increasingly important. This dissertation addresses these challenges through a set of
defined research questions and goals that aim to find common ground in the prototyping
landscape, understand the diverse needs of users, and motivate the development of
integrated solutions that enhance prototyping workflows.

This chapter aims to explore the primary challenges faced by users during electronics
prototyping (Q1) by conducting a comprehensive literature survey of the current set of
prototyping platforms (G1). It introduces a taxonomy that encapsulates a broader set
of characteristics essential for a holistic understanding of the prototyping process and
its outcomes. Unlike existing comparisons focusing mainly on technical specifications,
our approach acknowledges the importance of user-based characteristics for toolkit
selection, particularly for individuals aiming to build deployable devices or prototypes
that can be replicated reliably.

Despite establishing a taxonomy for electronics toolkits that categorizes available
resources based on design, features, and target user groups, it became evident that
further exploration was needed to gauge how these characteristics align with real-world
applications and user expectations (Q1). To answer this question, this chapter presents
the results of an online survey conducted to unravel the preferences and experiences of
both non-professional makers and professional electronics engineers with prototyping
electronics. The aim was to uncover any unmet needs or overlooked characteristics that
could inform the development of integrated software-hardware solutions and address
the challenges of ensuring broad usability and accessibility in prototyping tools.

This chapter is based on the conference proceedings paper “A Survey and Taxonomy
of Electronics Toolkits for Interactive and Ubiquitous Device Prototyping”, which
was published in the “Proceedings of the ACM on Interactive, Mobile, Wearable and

24

3.1. INTRODUCTION

Ubiquitous Technologies” [Lambrichts, 2021]. The paper was presented virtually at the
IMWUT conference in 2021 and received a Best Presentation Award.

3.1 Introduction

In this chapter, we present a literature survey and product summary of the broad gamut
of electronics prototyping toolkits beyond the previously reported K-12 systems and
develop a taxonomy that goes beyond technical features and specifications. In this
sense, our work differs from existing online comparisons of commercial toolkits such
as [MakeMagazine, 2021] because our broader set of characteristics provides a more
holistic view of the prototyping process and the resulting artifact. For practitioners
who must build a device that can be deployed reliably or want a prototype that can
be replicated many times, including need-based characteristics is an important aid to
toolkit selection.

Given the plethora of electronics prototyping solutions that exist, it was not feasible
for us to examine them all. We have tried to provide a complete review of systems
reported in the research literature, but our coverage of commercial systems is not
comprehensive—for example, we have not included every microcontroller development
board or every variant of Arduino [Arduino, 2022]. Instead, we have tried to include
representative examples of each. In total, we have labeled 56 electronics toolkits. Our
taxonomy is, however, applicable beyond the specifics of this set, and we believe it will
also be valuable for discussing and comparing future generations of electronics toolkits.

We also report on the results of a formative online survey with 122 respondents, which
indicates the relevance of the characteristics in our taxonomy and offers new insights
into current prototyping practices, including the need to scale to multiple copies of
a prototype. This data reveals some needs currently unaddressed by the established
electronics toolkit offerings that could form the basis for future research.

The main contributions of this work are three-fold: Firstly, we report extensively on
the literature relating to electronics prototyping toolkits, and we include representative
commercial examples. Secondly, we present a novel taxonomy for classifying and
comparing these toolkits in new ways that we think provide a useful perspective to
others in the research community who are using electronics toolkits and /or developing
new ones. We use this taxonomy to label the toolkits we have reviewed, and the resulting
dataset is available online for ease of consumption. Thirdly, we report on the results
of an online survey that indicates the relevance of the characteristics in our taxonomy
to the practitioners we surveyed and highlights some common practices for building
individual prototypes and scaling up to larger numbers. Collectively, we hope these
contributions will provide a common ground for discussions between researchers in the
field and will highlight opportunities for future research into toolkits that support the
development of ubiquitous computing and interactive devices.

25

CHAPTER 3. FINDING COMMON GROUND

3.2 Identifying and Reviewing the Literature

Having provided a broad overview of the different approaches to electronics prototyping,
in this section we describe our methodology for reviewing commercial products and
academic projects in the electronics toolkit space. Data and insights from this literature
review informed the taxonomy presented in the next section.

3.2.1 What is an Electronics Prototyping Toolkit?

Various research communities have contributed to electronics prototyping platforms,
and these contributions have spanned many different research areas, including Human-
Computer Interaction (HCI), UbiComp, electronics engineering, and mechatronics. A
wealth of contributions have also come from industry, with examples of electronics
toolkits from multinational corporations like Lego [Lego, 2022] and smaller startups
such as SAM Labs [Labs, 2021]. With so many toolkits from a variety of stakeholders,
we were keen to objectively define which prototyping toolkits should be considered

in-scope or out-of-scope.

On this basis, we define electronics prototyping toolkits as having one or more higher-
level electronic modules composed of discrete electronic components that empower
users to prototype a wide variety of functional artifacts with control over both hardware
and software. This definition is similar to the more general definition of toolkits in HCI
reported in [Ledo, 2018], but we explicitly exclude the following types of projects and

products:

1. The large set of discrete electronic components (TYPE 1) as they are not part of a
coherent toolkit.

2. Projects that only present a novel engineering workflow without a new physical
toolkit, such as the wide variety of workflows for connecting discrete components
(TYPE 1) e.g. Instant Inkjet Circuits [Kawahara, 2013], iSkin [Weigel, 2015], Pa-
perPulse [Ramakers, 2015], The ToastBoard [Drew, 2016], Scanalog [Strasnick,
2017], VirtualComponent [Kim, 2019], Makers’ Marks [Savage, 2015] and Heim-
dall [Karchemsky, 2019].

3. Purely mechanical toolkits for making physical artifacts without embedded
electronic functionality, such as basic Lego bricks, StrutModeling [Leen, 2017] and
ProtoPiper [Agrawal, 2015].

4. Purely software electronic prototyping tools such as Fritzing [Knorig, 2009; Fritzing,
2021], Autodesk EAGLE [Autodesk, 2021], ConductAR [Narumi, 2015], IFTTT [Mi,
2017] and Gumstix Geppetto [Geppetto, 2021].

5. “Assembly kits” according to Eisenberg et al.’s [Eisenberg, 2002] “specificity
classification”. These are interactive products, such as Sifteo cubes [Merrill, 2012],
Sphero [Sphero, 2021], PlayPiper [Piper, 2021], and Cubetto[Cubetto, 2021] that
require assembly or programming but only allow for making a single or a handful

26

3.2. IDENTIFYING AND REVIEWING THE LITERATURE

of pre-determined artifacts. This naturally includes products primarily deployed
as-is, such as the Niko Home Control [Niko, 2021] and Loxone [Loxone, 2021]
home automation systems.

3.2.2 Corpus of Products and Publications

To create a representative corpus of products and research prototypes of electronics
prototyping platforms, we conducted a systematic search on Google Search, the ACM
Digital Library, and IEEE Xplore similar to the methodology of Grosse-Puppendahl et
al. [Grosse-Puppendahl, 2017]. Our search terms included all possible combinations of
hardware, prototyping, construction, physical, robotic and electronic with each of platform,
toolkit, prototyping and kit. We then examined the referenced literature of the articles
in these search results. Additionally, we browsed through popular online magazines,
including Make Magazine [MakeMagazine, 2021] and retailers and manufacturers of
electronic platforms, such as Seeed Studio [Studio, 2021], Sparkfun [SparkFun, 2021b]
and Adafruit [Adafruit, 2021b]. For every product and article, we verified whether
it was in or out-of-scope using the exclusion criteria listed above. This resulted in a
representative set of 56 unique electronics toolkits.

3.2.3 Characteristics

An initial set of labels was developed by me following an open-coding process [Charmaz,
2014; Ledo, 2018], and this was complemented by deductive codes from existing
literature on toolkits [Blikstein, 2015]. Collectively, we reflected on the set of labels
and formulated more precise definitions. Next, we grouped the refined labels into
objective characteristics that aligned with the hardware aspects of electronics toolkits
that form the focus of this chapter. After reaching a consensus on characteristics and
the associated labels, we did another pass over the dataset to ensure the labels were
correctly applied. This procedure resulted in 13 distinct characteristics.

As our taxonomy focuses on hardware-related aspects of electronics toolkits, the
final set of characteristics does not cover the programming and software debugging
aspects of toolkits in detail. These largely depend on the availability, compatibility, and
characteristics of software libraries and are therefore out-of-scope for this work. Likewise,
our taxonomy mainly focuses on the user experience offered by electronics toolkits and
is therefore complementary to existing comparisons of technical specifications such as
the online overview of development boards by Make Magazine [MakeMagazine, 2021].

3.2.4 Data Points and Clusters

While labeling electronics toolkits, we identified four clusters of toolkits with very similar
characteristics: (1) generic breakout boards, such as breakout boards for the Bosch BNO055
IMU sensor [Adafruit, 2022] and the MPR121 capacitive touch sensor [Adafruit, 2021a],
(2) programmable low-cost WiFi modules, such as those based on the ESP32 [Espressif,

27

CHAPTER 3. FINDING COMMON GROUND

2022b] and the ESP8266 [Espressif, 2022a], (3) silicon vendor development boards, such as
the TI Launchpad [Launchpad, 2021] and the nRF52840 DK [Semiconductor, 2021], and
(4) FPGA development boards, such as the Arduino MKR Vidor [Arduino, 2021] and the
Alchitry FPGA development boards [Alchitry, 2021]. Despite listing only two examples
for each of these clusters, tens if not hundreds of similar tools exist. Although they have
a wide range of technical specifications, we discovered a remarkable similarity in terms
of the characteristics used for evaluation in this work. Therefore, instead of labeling
each of these tools individually, we classified them into four clusters in our taxonomy:.
Indeed, the characteristics of each of these four clusters are very similar, and arguably,
they could be further collapsed, but we didn’t want to over-condense the representation
of so many different toolkits. Similarly, some of the named toolkits have many variants;
examples include a huge range of Arduino boards [Arduino, 2022] and many variants
of Raspberry Pi, including the recently launched Pi Pico [Pi, 2022b]. Entering each of
these as separate entries into our dataset was not feasible, so we have again consolidated
them into a single entry.

After this clustering process and accounting for our exclusion criteria, our taxonomy
includes 56 unique electronics toolkits as they exist at the time of writing. We believe
that our taxonomy is more valuable than these individual data points as it presents a
new perspective for discussing and comparing the current and future generations of
electronics toolkits.

3.3 Electronic Prototyping Platform Taxonomy

This section presents all 13 characteristics that encapsulate the nature of each platform,
the target audience, how widely adopted they are, and how prototypes are assembled,
deployed, and used.

3.3.1 Nature and Application

We start by considering the type of electronics supported by each platform. As shown
in Figure 3.1, 66% of platforms are TYPE 3, 8% are TYPE 2b, and the rest are TYPE 2a
(using the definitions from Chapter 2). As a reminder, the large number of TYPE 1
discrete electronic component solutions are out of scope as per the exclusion criterion 1.

Similar to the “domain specificity” dimension of Eisenberg et al. [Eisenberg, 2002], we
examined each platform to determine if it was optimized for a particular electronic
sub-domain. For example, mBot [mBot, 2021] and BlTalino [Silva, 2014; Bitalino, 2021]
target robotic vehicles and biomedical sensing respectively. Platforms that have no specific
focus, including Arduino, Lego Mindstorms [Lego, 2022], and littleBits [Bdeir, 2009] are
labeled not applicable. Resnick and Silverman [Resnick, 2005] suggest that prototyping
toolkits used in a K-12 education context should have “wide walls”, meaning that there
should be no particular focus on a sub-domain because generic platforms allow children
to expand their interests and passions. Outside of the classroom, however, this does not

28

3.3. ELECTRONIC PROTOTYPING PLATFORM TAXONOMY

Generic Low-cost WiFi Silicon vendor FPGA
Specific Toolkits Breakout boards modules MCU dev. boards dev. boards
Type of Type 2a Type 2b Type 2¢
. Type 3 (65% Type 2b Type 2a Type2a Type3 Type 2a
electronics (30%) (10%) (5%) ype 3 (65%) P yp Vp P yp
Wearables and Home Interactive paper
textiles (15%) automation (3%) (3%)
Electronic sub- Robotic vehicles Musical Biomedical e e e e
domain and drones (3%) instruments (2%) sensing (2%)
AI/ML (2%) n/a (70%)
Promoted with - Makers Makers Makers Makers
user groups K-12 Education Makers (77%) Electronic
group (50%) engineers (35%) Electronic Electronic Electronic Electronic
(multi-value) N 3 N 3
engineers engineers engineers engineers

Figure 3.1: Categories and labels concerning the nature and application of the platforms.

necessarily hold true. In many cases—especially when considering makers— specialized
toolkits are beneficial as they allow for faster prototyping in a particular sub-domain.

In addition to particular sub-domains, some electronics platforms are promoted with
user groups. In particular, we saw toolkits that were advertised for education, makers,
and electronics engineers, which we recorded accordingly. We noticed that this oftentimes
is not the same group for whom the toolkit was originally designed. For example, the
Arduino [Arduino, 2022] originally targeted designers but has had a lot of impact on
education. Similarly, the Raspberry Pi [Pi, 2022b] was designed for education but also
offers a compute module [Pi, 2021] very-much targeted at electronics engineers.

3.3.2 Assembly of Prototypes

The way(s) in which the modules in a prototyping toolkit are put together affects
important qualities such as the speed of assembly and ease of modification of a prototype,
its looks, and its durability. As shown in Figure 3.2 and described in this section, we
identified three characteristics that consistently affect these ‘assembly qualities’.

Generic Low-cost WiFi Silicon vendor FPGA
Specific Toolkits Breakout boards modules MCU dev. boards dev. boards
Individual Multi-wire cables Direct module-to-
Type of | conductors (45%) (27%) module (38%) Individual Individual Individual Individual
connection conductors conductors conductors conductors
Wireless (5%)
Friction fit (67%) Magnetic (8%) Locking (7%)
Connection Crocodile clips
mechanism (8%) P Adhesive (3%) Thread (3%) Friction fit Friction fit Friction fit Friction fit
A
(multi-value)
Screws (2%) Wireless (5%)
Connection Star (45%) Hybrid (25%) Bus (30%) Star Star Star Star
topology

Figure 3.2: Categories and labels concerning the assembly of individual elements into a working prototype.

We identified four major type of connections used in prototyping platforms. 38% of
toolkits require individual conductors to be manually connected, e.g., wires between
an Arduino and a breadboard or WiFi module, copper tape for interconnecting Cir-

29

CHAPTER 3. FINDING COMMON GROUND

cuit Stickers [Hodges, 2014], or conductive thread with the Lilypad [Buechley, 2008].
Around a third of all toolkits use multi-wire cables, such as the ribbon cables used in
NET Gadgeteer [Hodges, 2013]. 36% of prototyping toolkits use a direct module-to-
module approach that physically interconnects modules without wires, such as Arduino
shields [Adafruit, 2021c] that stack and littleBits [Bdeir, 2009] that clip together. Unfor-
tunately, this often results in prototypes that are increasingly tall or long. Finally, 2%
of toolkits do not require physical connections as they communicate wirelessly, such as
SAM Labs [Labs, 2021].

Multi-wire cables and direct module-to-module approaches help with interconnection as
users can see and feel how modules can be combined without composing a detailed
schematic diagram. Blikstein [Blikstein, 2015] refers to these affordances as “tangibility
mappings”. Tangibility mappings can “raise the ceiling” as they encourage exploring all
possibilities. These approaches also encourage “a path of least resistance” [Myers, 2000]
as errors are prevented. Some connectors are even entirely fool-proof by embedding a
mechanical or magnetic poka-yoke constraint, such as littleBits [Bdeir, 2009].

The next characteristic further details the specifics of the connection mechanism, which
has implications for the durability of the assembly, the tools that are required during
construction, and the reusability of components. The majority of toolkits embed friction
fit connectors, such as .NET Gadgeteer’s ribbon cables [Hodges, 2013] and Arduino’s
headers [Arduino, 2022]. 8% of toolkits support modules that interconnect mechanically
using a locking mechanism, for example a locking JST connector [Lego, 2022; mBot, 2021]
or snaps [Buechley, 2005]. 6% of toolkits use crocodile clips. To interconnect modules
more easily, 10% of toolkits support magnetic connectors. Magnetic connectors simply
snap together but can also accidentally disconnect when quite a light force is applied. A
few toolkits offer modules with strong fixations, such as screws (2%) or stitches using
thread (4%). While these connections require using external tools, they also allow for the
construction of a greater range of pieces and materials [Eisenberg, 2002]. Finally, in 2%
of toolkits, namely Circuit Stickers [Hodges, 2014], the modules interconnect using an
adhesive. Similar to stitches, adhesives make components harder to re-use.

The last characteristic related to the assembly of modules details the connection topology.
The majority of toolkits (56%) require direct connections to the processing board in a
star topology. In contrast, 32% of toolkits employ a bus topology, allowing modules to be
daisy chained (e.g., Foxels [Perteneder, 2020] and Cubelets [Cubelets, 2021; Schweikardt,
2006]). Some toolkits (10%) also support a hybrid star/bus, allowing daisy chaining
for some modules, while others need a direct connection to the processing board (e.g.,
NET Gadgeteer [Hodges, 2013] and Pmod [Pmod, 2021]). Some bus configurations
support automatic detection of the topology of an assembly, a feature that further
bridges the gap between computational and physical construction kits, according to
Eisenberg et al. [Eisenberg, 2002].

30

3.3. ELECTRONIC PROTOTYPING PLATFORM TAXONOMY

3.3.3 Deploying and Configuring

Figure 3.3 shows the three categories that relate to deploying and configuring electronics
prototyping toolkits. Typically, TYPE 2b breakout boards do not require or support
programming since they are operated through TYPE 2a/c components, so we added a
not applicable label to all three categories.

Generic Low-cost WiFi Silicon vendor FPGA
Specific Toolkits Breakout boards modules MCU dev. boards dev. boards
P .
rogramming Physical (20%) Software (75%) n/a (10%) n/a Soft ware So_ftwarg Sof twar_e
style configuration configuration configuration
. Fully self- Connected Tethered to
Dependencies contained (23%) wirelessly (12%) computer (73%) Tethered to Tethered to Tethered to
for programming n/a
A computer computer computer
(multi-value) n/a (8%)
R Fully self- Connected Tethered to
Dependencies contained (80%) wirelessly(3%) computer(8%) Fully self- Fully self- Fully self-
during n/a . " "
contained contained contained
deployment n/a (8%)

Figure 3.3: Categories and labels relating to deploying and configuring electronic prototypes built with
the platforms in our survey. Note that the labels in two categories are not mutually exclusive.

The first characteristic programming style classifies all toolkits into two categories. One
label groups all toolkits that are programmed using a physical configuration of modules in
space (22%). Examples include MakerWear [Kazemitabaar, 2017], ReWear [Kazemitabaar,
2016], and littleBits [Bdeir, 2009] that allow specifying behavior by physically composing
sensor and modifier modules. A second label groups all toolkits for which the behavior is
specified in a software configuration (74%). Examples include the micro:bit [microbit, 2022],
which is programmed using visual building blocks (i.e., Microsoft MakeCode [Devine,
2018]) or Python.

The two last labeling categories document external computing dependencies for
programming and dependencies during deployment. Eisenberg et al. [Eisenberg, 2002]
argue that communication between prototyping toolkits and desktop machines allows
the toolkit to leverage the computational power of the desktop computer and the
internet. While almost all modern electronics toolkits support communications with
external computing devices, some different architectures are available. For example,
both Cubelets [Cubelets, 2021; Schweikardt, 2006] and SAM Labs [Labs, 2021] are
programmed wirelessly, but SAM Labs also requires a wireless connection to a desktop

or tablet computer at all times to operate the final prototype.

3.3.4 Availability and Adoption

Figure 3.4 shows four characteristics of electronic prototyping platforms relating broadly
to their availability and use. These are described in more detail in this section.

The category existing use documents whether a platform has been used for only one-off
prototyping, to make multiple copies, or if it has been embedded and shipped in commercial
products. We define multiple copies as five or more exact copies built with the same

31

CHAPTER 3. FINDING COMMON GROUND

Generic Low-cost WiFi Silicon vendor FPGA
Specific Toolkits Breakout boards modules MCU dev. boards dev. boards
Existing use In commercial Multiple copies Only used in . In commercial Only used in Only used in
4 products (7%) (7%) one-offs (86%) P P products one-offs one-offs
iall
Commer:ua Y Yes (67%) No longer (2%) Never (31%) Yes Yes Yes Yes
available
Third party use Yes (86%) No (17%) Yes Yes Yes Yes

Open source Fully (45%) Partial (42%) Closed (13%) Fully Fully Fully Fully

Figure 3.4: Categories and labels relating broadly to the availability and use of the electronic prototyping
platforms in-scope for our survey.

prototyping platform. Multiple exact copies are often desired for long-term experiments
with multiple setups [Scott, 2011]. Going further, sometimes commercial products ship
using a prototyping platform, such as the Deltamaker 3D printer [DeltaMaker, 2021]
that embeds a Raspberry Pi, and the TriggerTrap SLR Camera trigger device [Kamps,
2021] that embeds an Arduino board. This suggests the platform is highly robust and
competitively priced compared to a custom PCB. Interestingly, as far as we can tell, 84%
of platforms (excluding the generic categories) have only been used to make one-offs.

The next category indicates if the platform was or still is commercially available.
While many electronics toolkits are commercially available, several toolkits are no longer
available (e.g., .NET Gadgeteer [Hodges, 2013]) or only available as research prototypes
(e.g., Foxels [Perteneder, 2020] and ESLOV [ESLOV, 2021]).

The following category, third party use, records if the platform was used only by the
team that created it (first party) or also by third parties. Naturally, all toolkits that have
been commercialized (60%) have also been used by many, but we were pleasantly
surprised to find that an additional 19% of toolkits — about half of the platforms that
have never been sold as products — have been used by third parties. Examples include
the use of d.tools [Hartmann, 2006] by third parties in workshops.

The final category in Figure 3.4 labels whether the engineering details of the platform are
open source, either fully (36%), partially (48%, e.g., via well-documented specifications
or an open source schematic but closed PCB layout), or completely closed (16%, more

common for commercial products).

3.4 Analyzing the characteristics

Figures 3.5 and 3.6 depict most of the 13 characteristics we have captured across all 56
toolkits we reviewed. To make this information easier to access, our dataset and an
interactive tool for exploring it are publicly available at http://etclassification. com.
This allows researchers and practitioners to explore the dataset by sorting, filtering, and
color-coding features and to analyze our labels and characteristics in more detail. In light
of the evolving nature of many electronics toolkits, we intentionally used the GitHub

32

http://etclassification.com

3.4. ANALYZING THE CHARACTERISTICS

version control platform to host our dataset and interactive tool. Via GitHub “pull
requests’, practitioners and researchers can update the dataset when existing toolkits
evolve, and new generations of prototyping toolkits become available.

Besides the objective characteristics covered in our taxonomy, there are important holistic
attributes of electronic prototyping toolkits, such as ease of use and the level of expertise
required. These attributes, which often map directly to user needs, are somewhat
subjective, which makes them harder to assess. We have developed an approach for
comparing different toolkits by building on the objective characteristics of our taxonomy.
In particular, we have evaluated all 56 toolkits across four more holistic characteristics
by assigning weights to the labels of our objective characteristics.

The first two of these more holistic characteristics we estimated are the level of electronics
expertise required and the level of programming expertise required. These characteristics
inevitably vary between toolkits, but the variation has not, to our knowledge, been
quantified in the literature. The third holistic characteristic evaluates the ease of
construction of a prototype, independently of electronics and programming expertise.
This relates to how fiddly and time-consuming the construction process is and also
encapsulates the time required to make multiple copies of the same prototype. Motivated
by the work of Hodges et al. [Hodges, 2020; Hodges, 2019a; Khurana, 2020], the fourth
and final more holistic characteristic that we evaluate is the ease of moving from a
prototype to a product. This considers the complexity of the pathway from the prototype
to a more integrated, robust, compact, and cost-effective design that can be used for

long-term deployments, for more extensive evaluation, or even as a low-volume product.

Type of connection
Expertise in electronics: Promoted with user groups
Connection topology

L . Programming style
Fxpertise in programming: Promoted with user groups

Type of connection
} Programming style
Ease of construction: & . &Sty .
Connection mechanism

Connection topology

Programming style
Existi

Ease of moving from prototype to product: XISHNG Use .
Dependency during deployment

Open source

Table 3.1: The four more holistic (and somewhat subjective) characteristics we evaluated (left) and the set
of objective characteristics upon which they are based (right).

Table 3.1 gives an overview of the objective characteristics in our taxonomy that contribute
to each of the aforementioned holistic characteristics. For example, we postulate that
it is more convenient to construct a prototype with a toolkit that (1) does not require
connecting individual wires, (2) can be programmed by physically interconnecting

33

CHAPTER 3. FINDING COMMON GROUND
X
QO
e
&
< & P
& P ¥ Legend
& . \(_)é* QO% & ‘0\0 egen
& L S Pe & NA
F IR P @
\50 & (\?}» 6& ,@Q oo‘v) \\‘\,be Electronic sub-domain
R N\ A\
?}?Jc@b&(,o‘\bo‘\;&\o‘\ é\\(\é‘o QIQ(' 0% £ ((,\’b Q,\(, See grouping in table
FFEFLLLL Ob-o%‘o’b((\?' By X
QQ‘ o((‘ QQ, NS 0@ Qe Qtz,.(_}\ & & & Type of electronics
AL E L FTEF Y R Type 2a/2b
. ® Type3
] Arduino MM E <> R P4
[Arduino, 2022] B W0« g ﬁ @ 5 ! Promoted with user groups
< d
[Stamp, 2021] BASIC Stamp [% o8O0 WH o K-12Education
MM
[BeagleBone, 2021] BeagleBone) W0 Yo Og W Makers
s Professional engineers
[Sadler; 2015] Bloctopus €D o ¢« F ¥oMOO= X L4

[Lee, 2004]

[Adafruit, 2024]
[Mikroe, 2021]
[Cubit, 2021]
[Hartmann, 2006]

[Cassinelli, 2017]

[Wyeth, 2001]
[ESLOV, 2021]
[Feather, 2021]
[Hodges, 2013]

[Grove, 2021]

[Lego, 2022]
[Bdeir, 2009]
[M5Stack, 2021]
[Collective, 2012]
[Mbed, 2021]
[microbit, 2022]
[Arduino, 2021]
[Makeblock, 2021]
[Particle, 2021]
[Greenberg, 2001]
[Pi, 2021b]

[Pine, 2021]
[Pmod, 2021]
[Printoo, 2021]
[Bloks, 2021]

[Parallax, 2021]

[Lifton, 2002]
[SparkFun, 2021a]

[Pi, 2022b]

[Labs, 2021]
[Adafruit, 2021e]
[Tinkerforge, 2021]

[Villar, 2007]

Calder Toolkit
Circuit
Playground
Click

Cubit
d.tools

Data Flow

Electronic
Blocks

ESLOV
Feather
Gadgeteer

Grove

Lego
Mindstorms
littleBits

M5Stack
Makey Makey
Mbed
micro:bit
MKR Vidor
Neuron
Particle
Phidgets
Pico

Pine

Pmod
Printoo
Project Bloks

Propeller

Pushpin
Computing

Qwiic
Raspberry Pi

SAM Labs
modules

Stemma
TinkerForge

VoodoolO

MM

MM

MM
1

C+

0g0 0000
[J

- -
e o

9. um
MM

Y
0’
.C+

MM
B“q
Q¢
.C+
9. MM
0°-

v eHBHEJ X
¥oHOO MK
O NN NE |
¥oHOO~ WX
¥ oMM X
HePO0= X
HePP0=X
ho GO0 XX
goHP0 MH
58500 N
P oA wawa[]se W 3
¥ o Q0 WX
HOO0 WX
¥oHP0»MW
Ol EENER X1
¥oHOO Wi
¥oHOO» MW
oSO Mt
P e MO0 WX
¥oHOO MWk
AR R NE
r e MO0 MR
R FJNEL §:
P wawawa[]se W 3
e HO0~ MW
FReOOO XX
HoHO0 Wk
Ge®O0r X
P wawana[]ae W #
B ADPrN
w N/A<>’¢$’¢$D3rd!x
F %N/A N/A N/AD3'd!“'
F SO0 MW
%o BB X

)

-

-

£

-

-

-

-

=2

-

a

-

-

-

-

-

-

-

)

Type of connection
C1 Individual wires
C+ Multi-wire cables
MM Module-to-module
W Wireless

Connection mechanism

F Friction fit
L Locking mechanism
C Crocodile clips

S Screws
A

Adhesive
T Thread
M Magnetic
W Wireless

Connection topology

* Star

T‘T Bus

?4 Hybrid
Programming style

$ Physical configuration

<> Software configuration

N/A Not applicable

Dependencies for
programming

& Tethered to computer

’f? Connected wirelessly

c()) Fully self-contained

N/A Not applicable
Dependencies during
deployment

,g Tethered to computer

’g.? Connected wirelessly

6) Fully self-contained

N/A Not applicable
Existing use

[J Only used in one-offs

|j——]| Multiple copies

@ In commercial products
User base

1t Only used by creators
34 Used by third parties

Commercially available
'H Yes
No longer
W Never
Open source
“ Fully
Partial

X Closed

Figure 3.5: A visualization of the first part of our dataset.

34

3.4. ANALYZING THE CHARACTERISTICS

[Adafruit, 2021d]

.\(&*(Q
o SIS
N SR
<© & Oé ¥ N2 Legend
«oo S) AS)
& & Se (& N
¥ F 0 X P RQ
ST LL RO S 3 .)
\So&'\{? & & ,@Q(\%"’\Qfo & e Electronic sub-domain
(9 R . P
Q}Q’ > (_,OQ\OQ \OQ & z(\(' ek‘(' Ry 52 ‘(_,\,b Q‘\(' See grouping in table
N N & LS L (\b‘(\% F &P .
QQ/ oé‘ QQ’ NS océ Qe & NSNS & Type of electronics
\%
AT (P K Q?' G R Type 2a/2b
Generic breakout ® Type3

.C1 F %NIANIANIAD:]ISME“

boards Promoted with user groups
Low-cost WiFi ° K-12 Education
Espressif, 2021 a c1 F <> '—] 3rd
- g ! modules . % ﬁ é) @ ! * Makers

[Launchpad, 2021]

Silicon vendor

Dot riosp0 MK

° Professional engineers

Type of connection

deibosids €1 Individual wires
FPGA C+ Multi-wire cables
. MM Module-to-module
[Arduino, 2021 c1 F <> rd
[Arduino,] e [beaiik (] x ﬁ @ D 3 ! ” W Wireless
Connection mechanism
F Friction fit
L Locking mechanism
C Crocodile clips
Musical instruments S Screws
A Adhesive
[Calegario, 2017] DMI toolkit o MM F 111 <> ﬁ ﬁ D 3rd x T Thread
M Magnetic
W Wireless
Wearables / textiles .
Connection topology
- t
[Lehn, 2004] eTacs @ o g MO X 3¢ star
e-textiles i Bus
)) c1 s <> 3rd
[Buechley, 2006] construction kit e * ﬁ 6) D x # Hybrid
[Ngai, 2013] i*CATch o 0 e+ F T'T <> ﬁ p D 31 x Programming style
d)) .
[Adafruit, 2020b] Flora [) ¢ c * <> ﬁ p D 3 ! “ $ Physical configuration
d <> Software configuration
[Adafruit, 2020a] Gemma o ¢ °¢ * < 6) D 3 ! “)
i d o s * - é) ’=]| - ! ” N/A - Not applicable
[Buechley, 2008] Lilypa o [) ﬁ O Dependencies for
d .
[Kazemitabaar, 2017] Makerwear @) Qo MM I',T 9 CO @ D 3 X programming
. Tethered to computer
MM L st &
[Buechley, 2005] Quilt Snaps o [] T'T a 6) 6) D 1 x 2 Connected wirelessly
<> t .
[Lambrichts, 2020] SoftMod o L T’T 9 ﬁo @ D 19 x 6) Fully self-contained
N/A Not applicable
Home automation))
© Dependencies during
<> t
[Perteneder, 2020] Foxels @ Mm-F 1"1' S 6) D 1 x deployment
Tethered to computer
' ' L]
[Laerhoven, 2002] Pin & Play o e+ F T'T <> ﬁ é) D 19 x

Interactive paper

[Hodges, 2014]

[Freed, 2011]

Circuit stickers

1/0 stickers

Robotic vehicles / drones

XOPOI M
®¥90O0xX

00
[J

>

c1
([

”',.p‘ Connected wirelessly

@ Fully self-contained

N/A Not applicable
Existing use

[Only used in one-offs

Ij:ll Multiple copies

E'I':ll In commercial products

[Cubelets, 2021] Cubelets € Qo MM H3H5O0 WX User base
’ 15 Only used by creators
[mBot, 2021] mBot o 0 Cc+ L * <> & @ D 3rd ! * 31 Used by third parties
Commercially available
Biomedical sensing - Yes
. No |
[silva, 2014] BiTalino @ 0¢ F ¥o-HOOs Wk v N° oneer
ever
Al/ML Open source
“ Fully
[Coral, 2021] Coral o F %O W partial
K Closed

Figure 3.6: A visualization of the second part of our dataset. The four clusters, representing more than a
single toolkit, have a gray background.

35

CHAPTER 3. FINDING COMMON GROUND

blocks, (3) does not require additional tools for connecting modules, such as adhesives
or stitches, and (4) can be connected in a bus topology. In our calculation, all relevant
characteristics contribute equally, and the weights are therefore distributed evenly
across all labels within an objective characteristicc. However, these weights can be
adjusted according to personal preference or specific requirements in order to identify
the platforms that are most suitable for specific prototyping settings. To allow others to
adjust the weights in this way, we have made the holistic characteristics configurable as
part of our interactive dataset®+.

Figure 3.7 illustrates how the electronics toolkits compare based on our holistic char-
acteristics, using our default weights. Although the ranking obviously changes if the
weights change, we are not aware of a more objective metric for assessing and comparing
holistic characteristics of toolkits. Due to space constraints, only the five highest and
lowest-ranking prototyping platforms for each of the four holistic characteristics are
named in the figure. However, the histograms in the background of the figure visualize
the distribution of all 56 electronics toolkits according to each of the more holistic

Expertise in electronics
Quilt Snaps 1/0 Stickers
SoftMod MakerWear Project Bloks Cubelets
silicon vendor dev boards Generic breakout boards Electronic Blocks _littleBits
Expertise in programming
Beagl! Project Blok
Lilypad Particle T uilt
textile construction kit~ MSStack LOW preak .) Electronic B
. . - . .
Ease of prototype construction silicon vendor dev boards Lego Mindstorms
BITalir MsStack Silicon vendor dev boards Ct
Project Bloks 1/0 Stickers Lego Mindstorms micro:bit Feather Gadgeteer " Low-cost WiFi modules
littleBits Electronic Blocks Cubelets etextile construction kit Particle BTalino Arduino
: -
Ease of moving from prototype to product softMod Quilt Snaps Raspberry Pi BeagleBone
DMitoolkit MakerWear Generic breakout boards
SAM Labs modules Lilypad

Figure 3.7: Prototyping platforms ranked according to four holistic characteristics, with ‘better” on the
right. Not all platforms can be named due to space constraints, but the shading indicates the distribution
of all 56 platforms from this study across each characteristic. Note that rankings are all relative to the
dataset. A larger version of this image can be found in Appendix A.1.

An interesting observation from Figure 3.7 is that platforms that require expertise
in electronics often also require expertise in programming; similarly, platforms with
low expertise requirements for electronics are often paired with low expertise in
programming. There does not appear to be any obvious trade-off between these two
holistic characteristics. The reverse is true of the other two holistic characteristics: very
broadly, we can see from Figure 3.7 that for many toolkits supporting easy prototype
construction, it’s hard to make a transition from prototype to product, and vice-versa.

3.5 Understanding How Electronics Toolkits are Used

Having developed a taxonomy for electronics toolkits, we wanted to get a deeper
understanding of how users value the different characteristics in practice and uncover

36

3.5. UNDERSTANDING HOW ELECTRONICS TOOLKITS ARE USED

any characteristics we may have missed. During the course of our research, we observed
that there are hundreds of electronics toolkits targeted at professional electronics
engineers and made available through numerous companies—but these are largely
homogeneous, resulting in just a few categories of toolkits in our dataset. In contrast, a
wide range of toolkits, many of which originate in academic research [Kazemitabaar,
2017; Cubelets, 2021; Hodges, 2013; Buechley, 2008; Hodges, 2014], are promoted for
makers and for educators. Indeed, there seems to be a strong focus on the design
and use of toolkits for education within the research community [Blikstein, 2013a;
Eisenberg, 2002; Blikstein, 2015; Blikstein, 2013b; Resnick, 2005]. With such a strong
focus on education, we were curious to evaluate if the needs of makers and electronics

engineers are addressed by the current electronics toolkit offerings.

To this end, we conducted an online survey to get an understanding of preferences
and experiences with prototyping electronics by non-professional (i.e., makers) and
professional electronics engineers. The online survey was aimed at people who have
built at least one electronic device prototype and consisted of both multiple-choice and
free-form responses for a total of 75 questions. By formulating simple questions and
grouping them in matrix Likert scales, we estimated filling in the survey would take
15 minutes on average. We employed a snowball sampling approach to reach as many
electronics practitioners and experts as possible. We initially distributed the survey via
email, social media, and community-specific platforms. The study ran for one week
in April 2020, and 122 people participated (21% response rate based on unique page
views). The time to complete the survey was 5-57 minutes (median = 13.5 minutes).

3.5.1 Our Respondents and Their Prototyping Experience

84% of our respondents identified as male, 13% as female, and 3% self-described as
‘other” or did not disclose gender. 16% of the participants were aged 18-24; 41% aged
25-34; 20% aged 35-44; 15% aged 45-54; 4% aged 55-64; and 2% aged 65-74. 2% of our
respondents did not disclose their age. 46% of respondents were located in Europe, 32%
in North America, and 20% in Asia, with 2% not disclosing a geographic region.

We also asked respondents about their backgrounds: 40% self-identified as an electrical or
electronics engineer (hereafter abbreviated to electronics engineer), 18% as a mechanical
or mechatronics engineer, 15% as an engineer with a different specialization, 17% as
a product or industrial designer and 59% as a computer scientist or programmer. In
addition, 69% self-identified as a researcher, 31% as a student (above K-12 education),
55% as a maker/DIY builder, 17% as a hobby programmer, and 1% as retired. None of
the preceding options were mutually exclusive—respondents were free to select all they
felt applied. 3% of our respondents selected none.

We did an initial analysis of the survey data, looking for differences based on the
background of our 122 respondents. We found the most insightful way to pivot our
dataset was based on whether respondents self-identified as having a background

37

CHAPTER 3. FINDING COMMON GROUND

in electrical and electronics engineering or not. Put another way, the electrical and
electronics engineers we surveyed reported different priorities and attitudes regarding
electronics prototyping compared to the respondents who don’t have the same technical
grounding in electronics. For this reason, we split our respondents into two mutually
exclusive groups of 49 electronics engineers vs. 73 respondents with backgrounds in
other disciplines, and we have used that split for all the analyses presented hereafter.

Following the demographics questions, respondents were asked how frequently they
build electronics prototypes in various device categories. They report having built
electronic devices several times (meaning more than once or twice) for the following
categories: learning and fun (70%), wearable electronics (45%), home automation systems
(43%), robotic systems excluding wheeled robots (42%), games and toys (33%), office
workplace devices (32%), wheeled robots (25%), interactive textiles (25%), biomedical
sensing (24%), flying vehicles (12%), and in-vehicle devices for cars (8%).

When splitting the data based on formal engineering expertise, we noticed electronics
engineers build significantly more electronic devices across all categories compared to
respondents from other disciplines (Mann-Whitney U=200966.5, p<0.001, Z=-5.61).

3.5.2 Use of Prototyping Platforms

We presented participants with a list of the commercially available electronics toolkits
covered in our detailed literature review and asked them to specify in a range how many
they’d heard of, how many they had experimented with once or twice, and how many
they used often. Participants were aware of the existence of many different platforms,
with 97% of respondents having heard of more than 4 and 75% of more than 7. In terms
of the hands-on experience of our respondents, 33% had experimented with 7 or more
platforms, 65% had experimented with 4 or more, and 98% had experimented with at
least 2 platforms. This indicates that our snowball sampling approach had successfully
solicited respondents with meaningful experience with prototyping toolkits.

Our data also shows that 8% of respondents use 2 or 3 platforms often, 28% use 4-6
platforms often, and 6% use 7 or more different platforms often. This is interesting
because it shows that the respondents who are regularly building prototypes tend to
leverage 4-6 different toolkits—they don’t appear to get comfortable with just one or
two toolkits and rely on only these. When comparing electronics engineers to all other
respondents, we noticed that 42% often use more than 4 platforms compared to only
19% of the respondents from other disciplines (The Fisher’s exact test: N =116, p < 0.05,
odds ratio = 3.0).

We were also curious why participants did not use a wider set of platforms, and
we addressed this through a multiple-choice (multiple-answer) question. 70% of the
participants simply responded they were happy with the platforms they already use,
with the majority of these (59%) indicating that it was not clear what benefits a new
platform would bring.

38

3.5. UNDERSTANDING HOW ELECTRONICS TOOLKITS ARE USED

In terms of the friction associated with adopting another platform, (30%) of our
respondents indicated “I do not want to learn another platform”, (27%) indicated “The
platforms are not well established and might be deprecated in the future”, (25%) checked
“I do not want to pay for another platform ”, (26%) indicated “The community support
is not good enough”, (24%) checked “Documentation or examples are too limited ”,
for (21%) “The platform seems too limited”, (19%) indicated “The platform seems too
complicated in use”, and (15%) said that “Too little detailed information is available
about the platform”. The low response rate on these latter options suggests that despite
the general trend of making electronics platforms simpler to learn and use, these factors
are not necessarily sufficient for switching to another prototyping toolkit.

3.5.3 Important Characteristics of Prototyping Platforms

In a final series of questions on prototyping platforms, we asked participants to rate 26
characteristics based on how important they are when selecting a prototyping platform.
These characteristics include the objective and more holistic characteristics listed earlier
in this chapter, reformulated to make them easier to understand where appropriate.
We also added nine new characteristics in order to highlight potential gaps in our
previous analysis. Figure 3.8 shows the importance of each characteristic for both
electronics engineers and respondents from other disciplines. The Likert scale answers
for all characteristics were: “always unimportant”, “usually unimportant”, “usually
important”, and “always important”.

Electronic engineers Other disciplines
Prototype is easy to iterate ~[E——— @ EEE—————————U prototype is easy to iterate
Prototype is easy to debug W ———— ISR prototype is easy to debug
**Easy to evolve to custom PCB I immmm—) SSSSSSSSSSSU prototype is durable
Platform is commercially available i ————— /) TEESSSSSSSSSSSE Modules are reusable
Platform is open source W E————— — " Platform is cheap
*Quick to build more copies * R — [—— ™ Platform is commercially available
**Use favorite programming language — 7\) — ! Prototype can communicate
Platform is cheap W= ———— '\ — ! Prototype is self-contained
Modules are reusable ® ——— /] \ == Platform is open source
Prototype is durable ® S N A ™ Platform is comprehensive
Platform is comprehensive ™ —— 7 \‘ — ® Modules are easy to connect
Prototype is self-contained ™ ———— — ™= Quick to build more copies*
Prototype can communicate ™ S = ‘ — M Prototype has low power consumption
Modules are easy to connect ™= E— — W Use favorite programming language**
Easy to integrate into enclosure W — ‘ W ™ Many physical module configurations
Prototype has low power consumption . e ® Easy to integrate into enclosure
Many physical module configurations == - p— = Prototype is small
Prototype is small ~H=— . W M Little electronics expertise required™”
No special tools required — m— - A — = Platform supports mechatronic systems
Platform supports mechatronic systems - . " — B Prototype looks like a real product
Prototype looks like a real product — m— — / e = Fasy to evolve to custom PCB**
Little programming expertise required — M— — W— == No special tools required
Prototype is reprogrammed wirelessly — mm— = e mmmmm Little programming expertise required
Platform is established in education — E—— . o mmmm Platform is established in education
**Little electronics expertise required — m— —— — mmmmm Prototype is reprogrammed wirelessly
No wires are visible in prototype — — - = mmmm No wires are visible in prototype
0% 50% 100% 100% 50% 0%

B Always unimportant ® Usually unimportant M Usually important M Always important

Figure 3.8: Comparing the ranking of the importance of different characteristics between electronics
engineers and respondents with a different background. We determined significance using Mann-Whitney
U tests (* p < 0.05, ** p < 0.001).

39

CHAPTER 3. FINDING COMMON GROUND

When analyzing the results, a Mann-Whitney U test showed that the characteristic “easy
to evolve to a custom PCB” is significantly more important to electronics engineers than
other respondents (U = 836.5, Z = -5.16, p < 0.001, r = 0.47). A significant difference was
also found for the characteristic “Quick to build more copies” (Mann-Whitney U = 1351,
Z=-231,p <0.05,r=0.21). These results suggest that electronics engineers find it more
important to replicate prototypes, a process that often involves designing a custom PCB.

We also found a significant difference between electronics engineers and other disciplines
for the characteristic “Use favorite programming language” (Mann-Whitney U = 1164.5,
Z =-3.46, p < 0.001, r = 0.31), with other disciplines being less concerned about the
choice of programming language. Conversely, and quite understandably, respondents
from other disciplines were keen to see “Little electronics expertise required” whereas
the electronics engineers were almost ambivalent about this (Mann-Whitney U = 2393.5,
Z=3.79,p <0.001, r =0.35).

The characteristics in our survey included three technical characteristics not covered
in our taxonomy: support for wireless communication, requirements for low power
consumption, and the support offered for debugging. The first two of these, frequently
reported in datasheets and online reviews [MakeMagazine, 2021], were not rated as
important selection criteria by our participants. However, debugging is very important,
according to our respondents. Unfortunately, debugging is challenging to characterize
and, as explained in Section 3.3.3, is largely affected by software aspects of a toolkit.
Evaluating this across different electronics toolkits remains an opportunity for future
research (see Section 3.6). An open question allowed respondents to suggest additional
important characteristics. Four valued compatibility with specific operating system(s),
and two prioritized their current prototyping platforms because they were on hand for
immediate use.

3.5.4 Experiences of Type 1 Prototyping and Scaling Up to Multiple Copies

We also asked participants questions about their experience prototyping with TYPE 1
electronics, i.e., with discrete electronic components. The majority (64%) reported
using solderless breadboards often, followed by soldering TH components (48%),
soldering components to a custom PCB (43%), soldering Surface-Mounted Device
(SMD) components (36%), using pre-built modules e.g. WiFi and battery charging
modules (36%), soldering components to strip boards (37%), designing custom PCBs for
SMD components (33%), using pre-built breakout boards for SMD components (22%),
designing custom PCBs for TH components (21%). When using Fisher’s exact test on the
number of people who use these tools often, we detect significant differences between
electronics engineers and other respondents regarding designing custom PCBs for SMD
components (31 vs. 8, N =121, p < 0.001, odds ratio = 13.4), designing custom PCBs for
TH components (18 vs. 7, N = 120, p < 0.001, odds ratio = 5.5), soldering components
to custom circuit boards (33 vs. 18, N = 121, p < 0.001, odds ratio = 6.1), soldering

40

3.5. UNDERSTANDING HOW ELECTRONICS TOOLKITS ARE USED

components to strip boards (25 vs. 19, N =121, p < 0.01, odds ratio = 2.9), and soldering
SMD components (33 vs. 10, N =121, p < 0.001, odds ratio = 12.4).

We also wanted to know to what extent those who prototype electronic devices start
with one of the toolkits listed in this chapter with a view to transitioning to a custom
PCB later in the process. We learned that 53% of all respondents often start the process
with TYPE 2a/c development boards, 44% often start with solderless breadboards, and
30% often start with TYPE 2b breakout boards. Of those using TYPE 2b toolkits, one-half
(15% of respondents) have used a system of modules such as Grove [Grove, 2021],
Pmod [Pmod, 2021], or Click [Mikroe, 2021]. Note that these responses are not mutually
exclusive, which is consistent with our earlier observation that toolkits of Types 1 and 2
are often used in conjunction with each other. Only 10% of our respondents often started
the prototyping process with a TYPE 3 toolkit such as .NET Gadgeteer [Hodges, 2013]
or littleBits [Bdeir, 2009] with the intent to transition to a custom PCB.

Next, we asked participants if they ever made multiple copies of a prototype and how
many. We were surprised that 94% of electronics engineers and 73% of other disciplines
reported making multiple copies; we thought it would be fewer. Our chi-squared test
showed that this difference is significant (x(6, N = 122) = 21.59,p < 0.01, $=0.42).
Figure 3.9 shows the distribution of the maximum number of copies for both groups.
While the majority of respondents who are not electronics engineers have made fewer
than 10 copies, 48% of them have made 10 or more. Across all respondents, 24% had
made more than 100 copies, 9% more than 1000, and 5% more than 10,000. Again, these
numbers were higher than we expected.

50 Electronics engineers

Other disciplines
40 Combined
30

20

Mumber of respandents

0 copies 1-10 copies 10-100 copies 100 - 1k copies 1k- 10k copies 10k- 100k 100k+ copies
copies

Figure 3.9: The number of copies of electronic prototypes made by electronics engineers and respondents
from other disciplines.

Finally, we asked participants how frequently they use different approaches to transition
from a one-off prototype to multiple copies. 39% of respondents reported they often
make copies using a custom PCB; there was a strong difference between electronics
engineers and respondents in other disciplines (69% vs. 16%, the Fisher’s exact test: N =
116, p = < 0.001, odds ratio = 11.2). In contrast, only 12% of respondents often make
copies using the same prototyping platform as used for the one-off prototype, and only
4% switch electronics toolkits to facilitate multiple copies.

41

CHAPTER 3. FINDING COMMON GROUND

3.6 Discussion

For the participants in our survey and the current generation of electronics toolkits
they use, it appears that electronics and programming expertise requirements are not
a significant barrier—either for those with an electronics engineering background or
those from other disciplines. This contrasts with a theme we see across many toolkits,
namely a drive to lower the programming and electronics skills required for device
prototyping. This trend may be driven by the use of electronics toolkits by children, for
which researchers suggest making the technology “as simple as possible — and maybe
even simpler” [Resnick, 2005]. Only a small portion of participants (19%) reported they
would not use some of the toolkits in our taxonomy because they seem to complicated
to use. This observation is also supported by the following free-form comment left
by a participant at the end of our survey: “Current modular kits make electronic design
easier, but the fundamentals are missed out on, and users that use these platforms struggle
[with] debugging (i.e., death by over-abstraction)”. Having said this, our snowball sampling
approach may have solicited respondents with quite some experience in prototyping
toolkits; as mentioned above, 65% of them had experience with at least 4 different
toolkits. Given this potential skew, we believe it’s important to continue lowering
the bar for electronics development to stimulate interest in STEM and to empower
more individuals and communities to engage in electronics prototyping. However, for
users familiar with prototyping toolkits, the level of expertise required in electronics
or programming appears to be sufficiently low already, and this group of users might
value other features more.

Our respondents did reveal several qualities of prototyping platforms that both elec-
tronics engineers and users from other disciplines find important. The most highly
rated characteristics across all respondents were ease of iteration and ease of debugging,
attributes that naturally relate to our holistic characteristic of “speed of construction”. It
seems that a future toolkit that speeds up the prototyping process without constraining
the artifacts that can be built (as many of the commercially available TYPE 3 toolkits
currently do) would appeal broadly and could add much value. We would certainly ask
participants more about this in a future survey.

Another characteristic that was ranked relatively high by all our respondents was low
cost. This is corroborated by the free-form comment from one of our participants: “They
[the toolkits] are often ludicrously expensive to accommodate unneeded features, or feel too much
like an end product in quality.” As researchers, when we develop new toolkits, we tend
to focus on adding features in service of adding value, and product designers may be
tempted to improve the form, fit, and finish of toolkits, but this user feedback is a timely
reminder that constraining cost can be as valuable as adding functionality.

We were somewhat surprised that the vast majority of our respondents (81%), inde-
pendent of their background, have engaged in making multiple copies of prototypes.

42

3.6. DISCUSSION

Over 50% have made over ten copies, and over 20% have made over 100 copies of a
prototype, again indicating a bias in our snowball sampling towards more experienced
makers. This appears to reflect a significant group of people who are moving beyond
demonstrating the feasibility of their ideas via a lab-bound prototype to a deployment
stage, frequently involving tens or hundreds of devices, if not more. This transition is
typically supported by moving from a toolkit-based prototype to custom-designed PCBs,
a process that, in turn, benefits from the availability of open-source design information.
However, 92% of our non-electronics engineering respondents do not often design
custom PCBs. This observation is also supported by comments of respondents, such as:
“I like to get into PCB design — but often find it daunting” and “When designing PCBs, I found
it hard to understand differences and packaging sizes of components and its implications on my
design”.

The holistic characteristic of “Ease of moving from prototype to product” that we
introduced in Section 3.4 should be a useful indicator of the ease of moving to a custom
PCB, but we would like to evaluate this more rigorously and formalize the selection
of weights assigned to the objective characteristics that underpin the calculation. It
may be possible to personalize recommendations for prototyping platforms based on
the preferences, expertise, and needs of individual users. Our previous analysis also
indicated that toolkits that more readily support a transition from prototype to product
may be liable to complicate the prototyping process, something that warrants careful
consideration. Finally, if more objective characteristics are made available in future

versions of the taxonomy, additional holistic characteristics, such as ease of debugging,
could be included.

One respondent highlighted a potentially fruitful research direction: “A prototyping toolkit
that makes this process [transitioning from prototypes to PCB] easier may make a huge difference”.
Although systems like Scanalog [Strasnick, 2017] help with component selection and
circuit design, to our knowledge no existing electronics toolkits have been designed with
the transition from a prototype to a more integrated PCB solution in mind. However,
the value of doing so has recently been highlighted in the literature [Hodges, 2020;
Hodges, 2019a]. In addition to the PCB design process, other barriers to making multiple
copies have been reported in the literature [Khurana, 2020], and one of these was also
raised by our respondents: “it [prototyping] has gotten so much easier over the years...
part identification/procurement for small volume runs that is affordable is the biggest hassle”,
pointing to another area of future research.

Our study results show that respondents use electronics toolkits for prototyping a variety
of interactive and ubiquitous computing devices, such as systems for experimentation
and fun, wearable electronics, and home automation solutions. This is consistent
with some of the specific domains targeted by electronics toolkits and reported in our
literature survey (see Figures 3.5 and 3.6).

In general, we believe there is a symbiotic relationship between electronics toolkit

43

CHAPTER 3. FINDING COMMON GROUND

availability and adoption in that when more tools are available, more ideas are explored,
and novel potential is revealed, driving further demand. In the coming years, we imagine
there will be a growing set of electronics toolkits to support Al and machine learning
applications, complementing Coral [Coral, 2021]. Having said this, our respondents did

not report much interest in textile interfaces or biomedical sensing.

The current version of our taxonomy, consisting of 13 objective characteristics and
their corresponding labels, mainly focuses on hardware aspects of toolkits. During the
course of this work, it has become clear that it could be extended to include aspects of
programming such as development platform compatibility, the availability of software
libraries, and support for debugging. In terms of the latter, we are aware of several
novel debugging and inspection techniques and tools for electronic prototyping, such as
BiFrost [McGrath, 2017], WiFrost [McGrath, 2018] and Scanalog [Strasnick, 2017], but
more research is needed to characterize what makes platforms easy to debug.

On reflection, it could also be useful to include the more standard technical specifications
that have been reported elsewhere, such as operating voltage requirements, processor
speed, and memory, so that all pertinent information is available in a consolidated form.
This would likely involve breaking out our four ‘generic’ categories (e.g., “‘Low-cost
WiFi modules’) and several other aggregated categories (e.g., "Arduino’) into specific
products. 59% of our survey participants reported that they were not clear about the
benefits offered by prototyping platforms other than the ones they already use, but such
a central repository of characteristics could help with this.

In developing the taxonomy presented in this chapter, we aimed for a generalized
classification of prototyping tools and platforms. While this provides a broad overview,
it can sometimes oversimplify the diverse experiences these tools offer. For example,
using an Arduino with breakout boards versus shields results in notably different
experiences: the former requires manual wiring and hands-on assembly, while the latter
allows for easier connections and often comes with tailored software libraries. These
differences affect both the assembly process and the software development approach.
Additionally, variations in software programming styles due to different assembly
methods can lead to varied user experiences. A platform like SoftMod, which supports
both hardware assembly and software programming, can result in distinct interaction
models, complicating their categorization within a generalized taxonomy. Thus, while
our taxonomy captures broad trends, it may miss specific nuances of user experiences
tied to different tools and methods. Future work should aim to refine this framework to
better represent the complexities of hardware assembly and software development in
electronics prototyping.

Finally, we must acknowledge that while our survey involved a good number of respon-
dents, our snowball sampling approach may have skewed towards more experienced
users of prototyping toolkits that are mostly male (84%) and located in the Western
world (78%). This might have led to biases in our data that we are keen to address in

44

3.7. SUMMARY

future surveys. Indeed, with electronics prototyping becoming increasingly accessible
to a global population with diverse backgrounds, experiences, and needs, more studies
are needed to address the needs of specific user groups. We, therefore, see our work as
a starting point that we hope other researchers can build upon.

3.7 Summary

In conclusion, we hope that the analysis of 56 electronics prototyping toolkits presented
in this chapter provides valuable insights for researchers and practitioners within the
community. This chapter directly addresses the research goal of understanding the
diverse needs of users (G1) by complementing existing surveys with the development of
13 objective characteristics that go beyond the technical specifications typically reported.
These characteristics were designed to capture the holistic user experience, reflecting the
more subjective yet essential aspects of toolkit usability, which are crucial for evaluating
how well these tools meet the practical demands of various user groups.

Additionally, this chapter contributes to answering the research questions related to
identifying the challenges users face when selecting and integrating hardware and
software components (Q1). By introducing the concept of holistic characteristics, we
provide a framework that more naturally represents typical user needs, enabling direct
comparisons between toolkits. This approach not only enriches the existing body of
knowledge but also offers a practical tool for users and researchers to better assess and
select the appropriate prototyping platforms for their specific needs.

We encourage readers to explore our dataset via http://etclassification.comand
GitHub, where they can delve deeper into the findings and apply them to their own
work. The results of the survey of 122 electronics toolkit users presented in this chapter
further corroborate and complement our first-hand analysis, aligning with the research
goal of capturing diverse user needs and preferences.

By highlighting the strengths and weaknesses of existing toolkits, this chapter has
identified future research directions that align with the goal of bridging the gap between
hardware and software compatibility (G2, G3). We hope that the work presented
in this chapter will inspire further research outside the scope of this dissertation in
the development of electronics toolkits that cater to both novices and experienced
users, supporting the broader aim of making prototyping more accessible and scalable.
Ultimately, we envision a future where prototyping toolkits evolve to meet the needs
of a diverse user base, enabling the creation of innovative interactive and ubiquitous
computing solutions.

45

http://etclassification.com

4

Prug-aND-PrAy HARDWARE THROUGH

CircuiTGLUE

Motivation

Drawing from the insights of the online survey discussed in Chapter 3, it became
apparent that hobbyists and professional engineers are reluctant to adopt TYPE 3
prototyping kits due to their closed ecosystems and the difficulties in incorporating new
or customized modules. This feedback pointed to a need for solutions that offer the
ease of use found in closed-ecosystem kits with the flexibility offered by open systems.
To bridge this gap, we developed CircuitGlue as a novel hardware glue, enabling the
straightforward integration of diverse TYPE 2 hardware components (G2) without
constraining users into a closed ecosystem. Its software-configurable header facilitates
hardware assembly by automatically changing the function of each pin, allowing users
to effortlessly customize connections to suit a wide array of third-party components.
As CircuitGlue is positioned between a microcontroller and off-the-shelf hardware
component, CircuitGlue offers the same flexibility as TYPE 2 breakout boards and
modules while maintaining the same ease of use as TYPE 3 modular systems.

Furthermore, this chapter also contributes the result of a formative and preliminary
user study, providing an answer to research questions Q1 and Q2. The formative study
involved in-depth discussions with an educator, a hobbyist, and an electronics engineer,
shedding light on their respective journeys through the prototyping landscape. The
preliminary user study compares CircuitGlue to traditional prototyping approaches,
further reinforcing the necessity for new prototyping tools.

This chapter is based on the conference proceedings paper “CircuitGlue: A Software
Configurable Converter for Interconnecting Multiple Heterogeneous Electronic Compo-
nents”, which was published in the “Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies” [Lambrichts, 2023]. The paper was presented
at the IMWUT conference in 2023 in Canctin, Mexico.

46

4.1. INTRODUCTION

S CircuitGlue Board
gEE EI= .E B o

> s
O

]
ag

Figure 4.1: CircuitGlue is a novel electronic prototyping board that allows a wide variety of off-the-shelf
electronic components and modules to be connected to a software configurable header (at right). After

configuration and connection, modules work instantly and are compatible with each other independent of
the voltage levels, interface types, communication protocols, and pinouts they use.

4.1 Introduction

With the growing availability and popularity of physical computing, people with
increasingly diverse backgrounds are prototyping electronic circuits. As discussed in
Chapter 2, TYPE 1 electronics, like breadboards and jumper wires, are among the most
common tools for this, but this electronic prototyping style requires significant electronic
expertise as all components are wired individually. For some components that are only
available in small package sizes or need custom circuitry, TYPE 2 electronics have been
created, such as the Adafruit BNOO55 [Adafruit, 2022] and ESP8266 [Espressif, 2022a]
breakout boards. Although this style partially eases prototyping because only the
most essential connections are exposed, these modules are typically manufactured by
different parties, and their operating voltages, interface types, communication speeds,
protocols, and physical connections are often incompatible. Commercially available
power and protocol conversion modules, such as the Sparkfun Buck-Boost Converter!
and Adafruit FT232H? breakout board can help in this process, but selecting and
interfacing between all components appropriately still requires a good understanding
of electronics. Although breakout boards and development boards ease the design and
creation of custom prototypes, selecting and interconnecting these components is often
difficult for novices [Mellis, 2016]. To empower more people—especially those with

non-electronics backgrounds—to prototype sensor systems, various integrated modular

Thttps://www.sparkfun.com/products/15208
2 https://www.adafruit.com/product/2264

47

https://www.sparkfun.com/products/15208
https://www.adafruit.com/product/2264

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

platforms have been developed. These TYPE 3 electronics consist of a set of modules
specifically designed to plug together without the need to study technical specifications
in datasheets or to acquire any third-party components. Popular examples include .NET
Gadgeteer [Hodges, 2013], littleBits [Bdeir, 2009], and LEGO Mindstorms [Lego, 2022].
However, the online survey in Chapter 3 revealed that hobby makers and engineers are
often non-inclined to use these TYPE 3 prototyping kits as they do not want to lock
themselves into ecosystems [Lambrichts, 2021], and it can be hard for individuals to
extend them with new modules.

To combine the versatility and extensibility of TYPE 2 electronics and the ease of use
of TYPE 3 prototyping kits, we present CircuitGlue. CircuitGlue enables novices to
prototype interactive systems quickly and easily without being locked into a particular
ecosystem. CircuitGlue is an electronic prototyping board (Figure 4.1) that exposes eight
“programmable” header pins that directly interface with a wide variety of third-party
components and modules. Each of the eight header pins can be programmed to either
connect to ground, output a specific voltage, or support an analog or digital reading or
signal generation. Once the CircuitGlue board is configured, modules are immediately
operational for testing or integration in a prototype—they are powered, and data and
sensor readings are available on a digital bus. CircuitGlue also implements the Jacdac
protocol stack [Devine, 2022], which means a standardized, abstracted representation
of the component is presented, which allows the component to be integrated with
code using any of the Jacdac-supported programming paradigms, including Microsoft
MakeCode. Afterward, our complementary software environment further assists the
user by showing them how to connect the module directly to a development board. In
this way, the CircuitGlue board is ‘freed up” and can then be reused to interface with
another module or component. This approach helps novices in electronics to assemble
advanced prototypes in iterations.

The core contribution of this work is CircuitGlue, a novel intelligent software-configurable
prototyping board that facilitates interconnecting and testing various heterogeneous
electronic components and modules. More specifically, we contribute:

¢ The CircuitGlue board, exposing eight programmable header pins that are config-
urable in software to drive a wide variety of electronic components. We benchmark
our board’s design via a technical evaluation.

* A software architecture that makes the functionality of electronic modules and
components available on the Jacdac communications bus. This makes many
commercially available electronic modules compatible with each other and the
Jacdac ecosystem.

* A demonstration of how CircuitGlue facilitates and enriches electronic prototyping
workflows and helps with testing components and building electronic prototypes.

¢ A preliminary user evaluation reporting on the utility of CircuitGlue for novices
in electronics.

48

4.2. WALKTHROUGH

4.2 Walkthrough

This walkthrough demonstrates how Sam, a novice prototyping enthusiast, uses Cir-
cuitGlue to prototype a smart desktop fan. The fan is powered by a DC motor and
consists of a temperature sensor and a presence sensor to automatically power the fan
when the temperature is too high, and presence is detected. Prototyping this interactive
system with a microcontroller-based development board, such as the BBC micro:bit,
would typically require inspecting the datasheet of all three components, finding and
ordering an additional motor driver board as well as a DC-DC voltage converter, and
figuring out the correct wiring of all these components as shown in Figure 4.6. However,
Sam is uncertain about the exact workings of all these components and oftentimes
does not understand the myriad of characteristics provided in datasheets. Therefore,
Sam uses the CircuitGlue platform in the prototyping scenario below, allowing him to

interconnect the heterogeneous set of electronic components needed in this project.

=
=3

7% et U
e e e,

Figure 4.2: Configuring the CircuitGlue board to drive the temperature sensor by (1) connecting the
CircuitGlue board to the computer and micro:bit, (2) configuring CircuitGlue by selecting the temperature
module in the configuration tool, and (3) plugging the temperature sensor module into the programmable
header.

Sam starts with the temperature sensor module. Instead of looking up detailed
temperature sensor characteristics in its datasheet, Sam connects a CircuitGlue board to
his computer with a USB cable and to the micro:bit with a Jacdac cable and a micro:bit
Jacdac adapter (Figure 4.2 - 1). Next, he opens the CircuitGlue configuration tool in
a browser and selects the temperature sensor (DHT11) from the list of components
currently implemented in CircuitGlue. A visual representation of the CircuitGlue board

49

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

‘CIRCUITGLUE CONFIGURATION TOOL

Configure CircuitGlue boards
ich CircuitGlue board do you want to program?
COMA (CircuitGlue) v
Vhich module do you want to plug-in?
Temperature/Humidity sensor (DHT11) v

At what position do you want to plug-in the module?

rotate module

Figure 4.3: Web-based CircuitGlue configuration tool.

and connected temperature sensor is shown (Figure 4.2 - 2 and Figure 4.3). After the
configuration tool has automatically configured the CircuitGlue board, Sam takes the
temperature sensor and plugs it into the programmable header matching the position
shown on-screen in the configuration tool (Figure 4.2 - 3). When browsing to the Jacdac
dashboard?, he immediately sees a “digital twin” of the temperature sensor with live
sensor readings (Figure 4.4). Sam now writes application logic for the temperature sensor
by programming the micro:bit using, for example, Microsoft MakeCode*. MakeCode is
one of several programming solutions that support the Jacdac communication protocol,
and as such, all components available on the digital Jacdac bus are available as blocks in
MakeCode (Figure 4.5).

Next, Sam connects a second CircuitGlue board to his computer and the same micro:bit
and uses the CircuitGlue configuration tool to select the DC motor (Brushed - 12V DC).
As he doesn’t need to add a motor driver module and external 12V power supply, the
DC motor is instantly operational and visible via the Jacdac dashboard after plugging
the motor directly into the CircuitGlue board. Like the temperature sensor—the DC
motor is now also available as a block in MakeCode. Sam then programs the micro:bit
to power the DC motor when the temperature reading exceeds 25° C.

When Sam is happy with his CircuitGlue-based prototype, he can use the circuit diagram
generator in the CircuitGlue configuration tool to help him wire the temperature sensor
and DC motor directly to the micro:bit, freeing up the CircuitGlue boards. As shown in
Figure 4.6, this feature uses the knowledge of the characteristics of all components in

3https://microsoft.github.io/jacdac-docs/dashboard
4 https://makecode.microbit.org/

50

https://microsoft.github.io/jacdac-docs/dashboard
https://makecode.microbit.org/

4.2. WALKTHROUGH

Jacdac - Dashboard

c

& microsoft.github.io/jacdac-docs/dashboard/

§ orclick + .

9 jacdac-microbit
°C
8 20.0-

— 4+ X Simulators
@ simulate @ = § %
— tl.!. Devices

PZ62

This web site collects anonymous usage analytics. Learn more...
Contact Us |Privacy & Cookies |Terms Of Use |Trademarks |3a6b72f4 | Save trace © 2022 Microsoft Corporation -

Figure 4.4: Visualizing the reading of the temperature sensor module in the Jacdac dashboard.

@ Microsoft MakeCode for microt X

<€]

B8 Microsoft | @ micro:bit

[0 START SIMULATORS

— 4 X simulators

B 0 =

1l Show data Simulator

B Download sse

@ makecode.microbit.org/#editor

& Blocks I8 Javascript v

© nput
@ Music
© Led

wil Radio
£ Modules
C Loops
>3 Logic
= variables
B Math

© Extensions

I V' Advanced

deskiop_fan

QE

on temperature ¥ temperature changed by ° o)

if temperature ~ temperature) | >~ (@)

show string (T URT

then

Figure 4.5: Writing the application logic on the micro:bit using MakeCode building blocks.

51

CircuitGlue to render a custom circuit diagram. Sam uses this diagram to connect the
temperature sensor and the DC motor (using an L298N DC motor driver and 12V/3A
power supply) to the micro:bit. Even though both sensors are now directly connected to
the micro:bit without CircuitGlue boards, CircuitGlue ensures they are still available
on the Jacdac bus as blocks in MakeCode. As such, Sam’s prototype is still operational
using the same application logic after taking out the CircuitGlue boards.

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

@ CircuitGlue
<

C @ 127.00.1:3001

CIRCUITGLUE CONFIGURATION TOOL

Creating custom circuits

Connected to development board

none found

12V

Figure 4.6: A circuit diagram generated to facilitate building a custom circuit using the DC motor,
temperature sensot, and PIR motion sensor.

Sam is uncertain whether to use an ultrasonic distance sensor or a PIR motion sensor
to detect presence. To compare the behavior of both sensors, Sam configures one
CircuitGlue board to interface with the ultrasonic distance sensor (HC-SR04) and the
other for the PIR motion sensor (HC-SR501). After plugging in both sensors, readings
of both of them are visible side-by-side via the Jacdac dashboard (Figure 4.7). Sam
experiments a bit and decides the PIR motion sensor is more effective for detecting
presence in a room. He updates the application logic on the micro:bit to only power
the DC motor when presence is detected, and the temperature exceeds 25° C. When
satisfied with the prototyped system, Sam can use the circuit diagram generator again
to receive instructions for connecting the PIR motion sensor directly to the micro:bit,
making the CircuitGlue boards available for his next project.

4.3 Related Work

This work draws from and builds upon prior work on modules for electronic prototyp-
ing [Lambrichts, 2021], tools to ease breadboarding and development [Hodges, 2012],
and reprogrammable integrated circuits.

52

4.3. RELATED WORK

Jacdac - Dashboard + x RS

C @ microsoftgithub.io/jacdac-docs/dashboard/ O @ cuest

A, Jacdac

-+ x Simulators

(@ sSimulate @ = § % J = -8: § orclick + .
lIJ. Devices
[cvag X [zaio X

0.90

This web site collects anonymous usage analytics. Learn more.
Contact Us |Privacy & Cookies |Terms Of Use |Trademarks |3a6b72f4 | Save trace © 2022 Microsoft Corporation

Figure 4.7: Comparing the ultrasonic distance sensor and PIR motion sensor side-to-side in the Jacdac
dashboard. The Jacdac dashboard visualizes the distance sensor (left) using a numeric value, while the
motion sensor (right) is represented by a graphical illustration indicating whether motion is detected or
not.

4.3.1 Modules for Electronics Prototyping

Since the birth of the electronics industry, engineers have naturally sought ways to
accelerate the prototyping process of electronic devices. Instead of working with
individual electronic components only, many prototyping practices nowadays involve
extending or interconnecting ready-made PCBs, such as breakout boards (e.g. for the
BNOO055 [Adafruit, 2022] and ESP8266 [Espressif, 2022a]), and development boards
(including the BBC micro:bit [microbit, 2022], Arduino [Arduino, 2022], and the
Raspberry Pi [Pi, 2022b]). Prototyping with such boards is usually more convenient than
working directly with the ICs but still requires looking up technical details in datasheets
and the use of additional voltage and protocol conversion modules because these boards
are typically manufactured by different companies.

Integrated modular systems, on the other hand, offer complete sets of modules specif-
ically designed to work together without needing any other components. Examples
include .NET Gadgeteer [Hodges, 2013], SoftMod [Lambrichts, 2020], Phidgets [Green-
berg, 2001], and SAM Labs [Labs, 2021]. However, adding modules or components
not compatible with the integrated modular system is usually hard—their technical
specifications may not be exposed, and even if they are, additional voltage and protocol
converters are often necessary. In many ways, CircuitGlue brings the plug-and-play
benefits of integrated modular systems to breakout boards by offering a converter that
ensures compatibility between heterogeneous electronic components.

4.3.2 Tools to Ease Breadboarding and Development

As breadboards are one of the most popular tools for circuit prototyping, researchers
frequently present tools to facilitate designing, building, and testing electronic pro-

53

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

totypes on breadboards. Prototyping boards such as ToastBoard [Drew, 2016] and
CurrentViz [Wu, 2017] enable circuit inspection by continuously measuring and vi-
sualizing voltage and current levels throughout a breadboard circuit. In addition to
visualizing the state of a breadboard, SchemaBoard [Kim, 2020b] instructs users how
to connect components on a breadboard using integrated LEDs, and HeyTeddy [Kim,
2020a] guides users using text or voice conversations. Trigger-Action-Circuits [Ander-
son, 2017] facilitates breadboarding by generating all the necessary circuitry, firmware,
and assembly instructions based on simple behavioral descriptions. In contrast, Cir-
cuito.io [Circuito, 2022] automatically generates breadboard connection diagrams based
on a set of input/output modules and a microcontroller. Similar to these existing
techniques, CircuitGlue facilitates building breadboard prototypes by demonstrating
how a component can be connected to a development board using common off-the-shelf
conversion modules instead of a CircuitGlue board.

Another important issue of breadboarding is the tangling of wires, which makes circuits
fragile and error-prone. CircuitStack [Wang, 2016] contributes a new breadboard design
that addresses this issue by interconnecting components via a printed circuit board
instead of using jumper wires. Rather than using physical jumper wires, VirtualWire [Lee,
2021] takes a different approach and allows rows on a breadboard to be connected
in software. Instead of requiring all components to be present on a breadboard,
Proxino [Wu, 2019] injects software-generated signals to replace any missing components.
Contributing to this line of research, CircuitGlue also avoids wired connections by
allowing modules to connect directly to the CircuitGlue board.

Finally, prototypers frequently rely on a range of test and measurement equipment
during the development process. Obvious examples include a huge variety of widely
available power supplies, multimeters and oscilloscopes. Of particular note are low
cost PC accessories such as the Bus Pirate serial communications monitor®, Saleae logic
analyzers® and Digilent’s Analog Discovery unit’.

4.3.3 Reprogrammable Integrated Circuits

Alphonsus et al. [Alphonsus, 2016] offer an extensive overview of various types of repro-
grammable integrated circuits and their applications, including Field-Programmable
Gate Arrays (FPGAs) [Romano, 2022] and programmable system-on-chips (PSoCs) [In-
fineon, 2022]. Over the past few years, reprogrammable integrated circuits have
become more common in HCI. Scanalog [Strasnick, 2017], for example, uses a Field-
Programmable Analog Array (FPAA) [Anadigm, 2022] to facilitate interactive design
and debugging of analog circuits by using direct manipulation. A special type of repro-
grammable integrated circuit is the crosspoint switch, which has been used in several
interactive systems lately. VirtualWire [Lee, 2021], for example, uses a crosspoint switch

5http://dangerousprototypes.com/docs/Bus_Pirate
6https://www.saleae.com
7https://digilent.com/reference/test-and-measurement/analog-discovery/start

54

http://dangerousprototypes.com/docs/Bus_Pirate
https://www.saleae.com
https://digilent.com/reference/test-and-measurement/analog-discovery/start

4.4. DESIGN RATIONALE

to allow users to interconnect different rows on a breadboard in software. Similarly, Vir-
tualComponent [Kim, 2019] uses a crosspoint switch to connect and disconnect specific
component banks on a printed circuit board. CircuitGlue goes beyond software config-
urable connections between header pins [Lee, 2021] and peripherals [Infineon, 2022] by
offering programmable voltage power delivery and conversion of digital protocols.

Several microcontrollers also embed features of reprogrammable integrated circuits.
The nRF52 series [Semiconductor, 2022a], for example, implements a Programmable
Peripheral Interconnect (PPI) [Semiconductor, 2022b] that allows dynamic pin mapping,
configuration, and allocation of resources and enables peripherals to communicate
autonomously independently of the CPU. Similarly, the RP2040 processor of the
Raspberry Pi Pico [Pi, 2022a] includes a form of software programmable digital hardware
called Programmable Input/Output (PIO) [Pi, 2022c]. While these approaches are very
versatile, they can only be used to route low-current signals—unlike the programmable
header pins of CircuitGlue, they are not suitable for powering external electronics.

4.4 Design Rationale

To guide the design of our CircuitGlue and gather early feedback on the prototyping
styles that are interesting to potential user groups, we conducted informal interviews
using conceptual renderings of the CircuitGlue board (Figure 4.8).

=
=

Figure 4.8: Example of the conceptual renderings used in the interviews to gather early feedback on the
CircuitGlue concept.

4.4.1 Early Feedback on the CircuitGlue Concept

We conducted informal interviews with three potential users: a teacher, a maker, and
an electronics engineer, all recruited from our network. Given the limited number of
interviews, the results reported in this section simply offer initial feedback on CircuitGlue
to gauge perceptions of the concept and do not necessarily reflect interest from the

55

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

broader community. The interviews were conducted online and lasted 30 minutes.

To correctly interpret and contextualize participants’ comments, we first invited them to
fill out a short questionnaire asking about their previous prototyping experiences. The
teacher reported using integrated modular systems, such as NET Gadgeteer [Hodges,
2013] frequently, whereas the maker and electronics engineer only used breakout boards
or off-the-shelf electronic components.

At the start of the interview, we introduced the CircuitGlue concept as a black box for
interfacing with any type of electronic component, including modules. For the teacher,
this already had “massive potential if I could hook up stuff without having to worry about the
polarity”, and the maker also saw potential in CircuitGlue for rapid prototyping. Using
ten conceptual renderings, we then introduced various potential functionalities and
prototyping styles (covered in detail in Section 4.8). After explaining the prototyping
style, we asked participants how they valued the scenario and when it could be useful
in their prototyping practices.

Both the maker and the teacher were enthusiastic about using CircuitGlue to quickly test
components without needing to create complex circuits (Section 4.8.2). While the maker
saw a lot of potential in using CircuitGlue to work with more complex components, such
as motors and valves, the teacher’s initial response was that s/he would still prefer using
standard motor shields in the classroom as these shields are very cheap and familiar to
him/her. The opportunity to automatically generate a custom circuit diagram, based on
the knowledge of electronic components built into CircuitGlue, was especially appealing
to the maker who liked “ending up with a custom circuit without needing to do the thinking” .
Finally, we presented a scenario in which CircuitGlue was used in a similar way to a
development board (Section 4.8.5). The maker, in particular, saw potential in writing
custom software while still using the programmable voltage and logic level conversions
provided by CircuitGlue. In contrast, the teacher appreciated the compatibility of
CircuitGlue with micro:bit as s/he already used this platform in the classroom.

Throughout the interview, the electronics engineer did not find many scenarios appealing
as s/he was used to looking in datasheets and did not trust libraries developed by
third parties as “they can potentially blow up modules.” The engineer, however, thought
CircuitGlue would be great in educational settings.

4.4.2 Design Decisions

The CircuitGlue board exposes eight programmable header pins, of which the pin
assignments are programmed in software; each can be configured to either output digital
signals, read analog or digital signals, connect to ground, or deliver power, with the
latter being programmable in steps of 0.1V. Our board supports digital communication
signals via the programmable header pins at both 3.3V and 5V and supports analog
readings up to 12V. The board is powered and can be programmed via an onboard
USB-C connector. In situations where a module’s pinout does not fit our single row eight

56

4.5. SUPPORTING NEW MODULES

header pin configuration, such as modules that expose two rows, a small breadboard or
adapter board can be used to connect to CircuitGlue. The CircuitGlue board supports
components and modules that operate between 1.8V and 12V and supplies up to 3A.
To allow for easy interconnection between a CircuitGlue board and Jacdac compatible
devices, such as the micro:bit, our board embeds the Jacdac edge connector®. In addition
to USB-C, the CircuitGlue board can also be programmed using Jacdac.

4.4.3 Jacdac as Bus Protocol

To allow a wide variety of electronic components and modules to intercommunicate,
CircuitGlue needs to translate analog readings and digital signals, such as I2C and SP,
to a common bus protocol. This is realized using a short snippet of translation code for
every electronic component, as described in Section 4.5.

CircuitGlue implements the Jacdac [Devine, 2022] communication protocol, which is
built on top of Single Wire Serial (SWS), as the common bus protocol. By translating all
analog and digital signals into Jacdac packets, every module or component connected
to the CircuitGlue board can be recognized as a new device on the Jacdac bus. This
enables seamless intercommunication between heterogeneous electronic components
and modules, as demonstrated in our Walkthrough (Section 4.2).

CircuitGlue could have also used a different existing protocol, such as I2C, SPI, or a CAN
bus, but supporting Jacdac on CircuitGlue further facilitates working with electronics.
Firstly, Jacdac announces the components and their functionality as soon as they are
connected. This allows instant interaction and experimentation with components and
modules via the Jacdac dashboard?®. Secondly, Jacdac introduces a software abstraction
via its “services” layer. Each Jacdac service exposes a basic function, such as a button
or accelerometer. This abstraction makes it easy to interface with any given type of
component in exactly the same way independently of the specific hardware. For example,
the ADXL345 is an accelerometer that makes readings available over 12C or SPI, while
the MMA7361 accelerometer outputs analog voltages. By using the Jacdac accelerometer
service, acceleration readings for both sensors use exactly the same methods. As such,
one can substitute a component with a similar one from a different supplier without
making changes to application logic.

4.5 Supporting New Modules

As demonstrated in the Walkthrough (Section 4.2), the CircuitGlue configuration tool
allows users to simply select the electronic module they want from a list of supported
modules. The CircuitGlue configuration tool then uploads the specifications for all eight
programmable header pins to the CircuitGlue board and flashes the driver, referred to
as “translation code”, to correctly interface with the connected module and expose its

8 https://microsoft.github.io/jacdac-docs/ddk/design/electro-mechanical

57

https://microsoft.github.io/jacdac-docs/ddk/design/electro-mechanical

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

functionality on the Jacdac bus.

To add support for additional modules to CircuitGlue, the new module’s pin configura-
tion must be specified, and a translation code snippet has to be written. Writing the
translation code requires implementing the respective Jacdac service layer?, such as the
accelerometer service for an ADXL345 accelerometer. The translation code must call
the initialization function of the appropriate Jacdac service and pass function pointers
to custom-written initialization(), update(), and read() functions. In these three
functions, custom code can be written, or calls can be made to an existing library, such
as an Arduino library. The example in Figure 4.9 shows translation code for supporting
the Jacdac temperature service using a DHT11 temperature sensor. More advanced
components sometimes require additional functions to be implemented, as specified in
the Jacdac documentation'®. When a module offers multiple functionalities, multiple
services should be implemented.

1 #include "Arduing.h"”

2 #include "DHT.h"

3

4

5 DHT dht(1, DHT11);

6

7 uint32_t last_sample = 8;

8 uint32_t last_sample_interval = @;

9
18 void initializer(void) {
11 // start the temperature sensor
12 dht.begin();
13}
14
15 void updater(void) {
16 f/ sample the temperature every two seconds
17 if (jd_should_sample_delay(&last_sample_interval, 20888))
18 last_sample = JD_FLOAT_TO_I22_1@(dht.readTemperature());
18}

21 uint32_t get_temperature(veid) {

22 // returns the last sample

23 return last_sample;

24 }

25

26

27 const env_sensor_api_t custom_temperature_api = {
28 .init = initializer,

29 .process = updater,

3e .get_reading = get_temperature,

31 0}

32

33 void setup(veoid) {

34 // initialize the temperature service providing our custom api
35 temperature_init(&custom_temperature_api);
36}

37

Figure 4.9: Example of the translation code written to support the DHT11 temperature sensor module.

9 https://microsoft.github.io/jacdac-docs/services/
Whttps://microsoft.github.io/jacdac-docs/ddk/services/#implementing-service-firmware

58

https://microsoft.github.io/jacdac-docs/services/
https://microsoft.github.io/jacdac-docs/ddk/services/#implementing-service-firmware

4.5. SUPPORTING NEW MODULES

Although writing translation code requires more technical expertise than simply using
CircuitGlue, leveraging the Jacdac programming paradigm and potentially re-using
Arduino driver code makes it relatively straightforward. We also note that it’s a one-time
effort—we envision users sharing these configurations and drivers via community
platforms in the future. Translation code is platform agnostic; the same code can be
used to control a module via the Jacdac protocol even if a CircuitGlue board is not used.
This is essential to ensure prototypes remain functional when modules are connected
to a development board with custom circuitry with the help of the CircuitGlue circuit
diagram generator feature.

In addition to writing translation code to expose a new module on the Jacdac bus, its
pinout must be specified. The CircuitGlue configuration tool streamlines the process of
supporting new modules by offering an interface for specifying the pinout and required
voltages of a new module (Figure 4.10). The configuration tool also embeds additional
intelligence that encodes and checks various heuristics relating to common protocols.
For example, when only one of the two pins required for the I2C protocol is specified,
the interface provides a warning.

CIRCUITGLUE CONFIGURATION TOOL Configure Profotype Database &= Jacdac Dashboard

Adding new modules

Generic name e.g. Temperature sensor

Module type e.g. DHT11

Picture Choose File No file chosen

Operating voltage 33 \
Signal voltage 3.3V ~

Module pinout

Pin0 Ground ~
Pin1 Voltage v
Pin 2 ~
digital_2 Name
Microcontroller ~ | Controller
Pin 3 g
analog_3 Name
0-33v v~ | Input range
Pin4 Communication protocol v
SPI v Protocol
SCK v Pin
Pin53 = Not connected ~
Pin6 Not connected v
Pin7 = Not connected v

Figure 4.10: Adding a new module to the database using the configuration tool.

59

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

4.6 CircuitGlue Hardware Design

To structure a discussion of the hardware design of the CircuitGlue board, we split it
into three sections (Figure 4.11): (1) a System-on-Chip (S50C) controlling and monitoring
the board, (2) voltage regulation and power delivery, and (3) hardware components for
configuring each of the eight programmable header pins.

@

Voltage
regulators

©)

Switching pin
assignments

®

Microcontroller

Figure 4.11: The design of the CircuitGlue board with (1) a System-on-Chip (SoC) controlling and
monitoring the board, (2) voltage regulation and power delivery, and (3) hardware components for
switching the assignment of programmable pins.

4.6.1 System-on-Chip

We decided to use a microcontroller SoC to control the CircuitGlue board instead
of configurable integrated logic chips, such as programmable system-on-chip (PSoC)
and Field-Programmable Gate Array (FPGA), as many existing software libraries
for prototyping with electronics, including Jacdac, are available for microcontrollers.
The CircuitGlue board is built around the nRF52840; this SoC allows the dynamic
assignment of peripherals to pins and, therefore, does not need additional hardware
components, such as crosspoint switches, to re-map the functionality of CircuitGlue’s
programmable header pins. To reduce the number of electronic components on the
board, we decided to use Raytac’s nRF52840 module. This module embeds the nRF52840
SoC and complementary components, such as capacitors and an antenna.

4.6.2 Regulating Power

The CircuitGlue board is powered through the onboard USB-C connector using Power
Delivery (PD) and accepts voltages between 5V and 15V. A USB-C PD controller on
the CircuitGlue board allows voltage negotiations with USB-C PD compatible power
supplies and is configured to always deliver the highest available voltage (with a
maximum of 15V) to the CircuitGlue board. When Power Delivery is unavailable, the

60

4.6. CIRCUITGLUE HARDWARE DESIGN

) 3.3V to power all electronic

components
3.3V Regulator QO Analog 0P Corirel e
Switch From Ve . .
3.3V / 5V to the high-side of
MCP1703T-3302 /O L logic level converter

5V Regulator O waxasaa

1*C Control Signal USBC
F
Controller

FUSB302B

MCP1703T-3302

Voltage Negotiation . V°|tage& rom MC
Adjustable Regulator T 1.8V - 12V to power modules

5V/9V/12V/15V X K
in the universal header

Analog p|O Control Sign
SWiItch s om MCU
DGA419LEDY

CONTROL SIGNAL s

VOLTAGE LINE ——

Digital Potentiometer " From MCU

MCP4151-103

Figure 4.12: Block diagram with all regulators responsible for providing the three voltage levels used by
the CircuitGlue board.

CircuitGlue board can be powered either from the 5V USB connection or by connecting
an external power supply to the board. Using the input voltage, the CircuitGlue board
internally regulates three voltage levels for its operation:

* Board voltage: A voltage of 3.3V to power all electronic components on the
CircuitGlue board. As shown in Figure 4.12, this voltage is supplied by a low-
dropout 3.3V regulator.

¢ Signal voltage: The voltage used by the logic level converters (described in
Section 4.6.3) to translate digital communication signals from the board voltage to
the voltage required for communicating with the electronic module plugged into
the programmable header. As most electronic modules require either 3.3V or 5V
communication signals, the signal voltage can toggle between these two voltages
using a digital switch, as shown in Figure 4.12.

* Programmable voltage: The voltage used to power modules or components
plugged into the programmable header. To supply a large selection of electronic
modules, this voltage line is programmable from 1.8 to 12V in steps of 0.1V via an
adjustable voltage regulator controlled by a 10kQ digital potentiometer driven by
the nRF52840 SoC. This can deliver a current up to 3A. See Figure 4.12 for details.
While the digital potentiometer has 256 steps, achieving the required voltage
range of 1.8V to 12V in steps of 0.1V is impossible due to the logarithmic scale
in the output of the voltage divider. Therefore, we dynamically switch between
two ranges using an analog switch. The graph shown in Figure 4.13 shows that
swapping between our two ranges (by switching between a resistance of 35k(2
and 5kQ) offers the full voltage range with the desired accuracy. As shown in
Figure 4.12, a voltage and current sensor is added to measure the actual voltage
and current usage of a module connected to the programmable header. This
information later verifies the programmed voltage and provides basic protection
against shorts and faults (Section 4.7).

61

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

251 |
226 |
201 -
176 -
151 -
126 - = 5kQ
101 - 35kQ
76
51
26 -

1 J
1,8 2,9 3,8 4,7 5,6 6,5 7,4 8,3 9,2 10,1 11,0 12,0

Programmable Resistor Setting (step)

Programmable Voltage Output (V)

Figure 4.13: The required setting in the digital potentiometer based on the requested output voltage and
selected top resistor.

4.6.3 Changing the Assignment of a Programmable Header Pin

As conceptualized in Figure 4.11, the CircuitGlue SoC controls everything necessary
to correctly assign the eight programmable header pins on the CircuitGlue board.
Figure 4.14 shows this in more detail. The dashed blocks in this figure represent the
electronic circuit for setting the assignment of exactly one programmable header pin;
eight such identical blocks are present on the CircuitGlue board. Each of these embeds
the circuitry to either configure the programmable header pin (1) as a General Purpose
Input/Output (GPIO) pin, (2) as an analog input pin, (3) as a connection to ground, or
(4) as a programmable voltage supply.

Latch signal from MCU

Clock signal from MCU

A\ 4 A 4

Data signal from MCU Shift Register Shift Register Shift Register
SN74HC595D SN74HC595D SN74HC595D

Inputs

v

Voltage :
Divider %

P32l Decoder Voltage =

Divider %
@ crio

HEF4555 Enable %

I > @ Analog :

[00] fo1] :

: <_ Ovoie
: [10]

..

Function Selector Block
Function Selector Block

...

Universal Header

P(0) P(1) P(2) P(3) P(4) P(5) P(6) P(7)

Figure 4.14: Block diagram of all components required for changing the assignments of the programmable
header pins of the CircuitGlue board.

Shift registers connected in series control all of the eight identical dashed blocks and
are driven by the nRF52840 SoC. For each dashed block, two shift register output pins

62

4.6. CIRCUITGLUE HARDWARE DESIGN

activate the appropriate circuit in a block by using a 1-of-4 decoder to ensure only one
of the four circuits is active at any time. As shown in Figure 4.14, a third shift register
output is used to disable the decoder when the programmable header pin needs to
be in a high impedance state. As we will further explain below, a fourth shift register
output is used to activate a voltage divider, which is part of the circuit for configuring
the programmable header pin as an analog input pin.

Programmable Header Pin as GPIO

As shown in Figure 4.15, an analog switch controlled by the decoder connects each of the
programmable header pins of the CircuitGlue board to a high-speed GPIO pin on the
nRF52840 SoC. While all components on the CircuitGlue board work with 3.3V signals,
a bidirectional logic level converter allows 5V signaling, as dictated by the plugged-in
module (as discussed in Section 4.6.2).

The logic level converter supports both push-pull and open-drain applications and can
achieve speeds up to 24Mbps and 2Mbps, respectively, which is sufficient for most
popular digital communication protocols. Two methods are built-in to protect the board
when users accidentally apply a higher voltage on one of the programmable header
pins. First, a comparator and AND gate instantly overwrite the signal from the decoder
to disconnect the analog switch when the voltage applied to the programmable header
pin exceeds the signal voltage. A non-inverting summing amplifier slightly increases
the signal voltage to prevent undesired cut-offs of the logic signal. Second, a clamping
diode, shown in Figure 4.15, further prevents voltages higher than 3.3V from passing to
the nRF52840 SoC.

Logic Voltage Line
from Power Unit Comparator
(3.3V/5V)

LM2901D

Control Signal
from Decoder [00]

SN74AHCO8D

3.3V Line Logic Voltage Line
from Power from Power Unit
Unit j (3.3V/5V) Analog

Switch
Logic Level
GPIO to NRF Px.xx Converter o/ o——— P(x)
TXS0104 DG412CY

Figure 4.15: Circuit for connecting the programmable header pin to a digital high-speed GPIO pin on the
nRF52840 SoC.

63

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

Programmable Header Pin as Analog Input

As shown in Figure 4.16, an analog switch controlled by the decoder connects the
programmable header pin of the CircuitGlue board to an analog input pin of the
nRF52840 SoC. The nRF52840 embeds a 12-bit analog-to-digital converter and supports
voltages up to 3.3V. Analog input readings up to 12V are supported at the expense
of the accuracy using a voltage divider controlled by the nRF52840 SoC, as shown
in Figure 4.16. This allows CircuitGlue to make resistance measurements to support
resistive sensors such as photoresistors. A comparator and OR gate automatically turn
on the voltage divider when the voltage supplied on the programmable header pin
exceeds 3.3V, and a non-inverting summing amplifier circuit allows small voltage peaks
to surpass the threshold. Finally, a feedback signal informs the nRF52840 SoC when the
voltage divider is activated so the actual voltage on the programmable header pin can
be calculated.

Control Signal

from Decoder [01] I

Analog
Switch

./

P(x)

DG412CY

Analog to NRF Px.xx 3.3V Line Comparator
from Power
Unit LM2901D
N-Channel
SN74AHC32D |

MOSFET
Voltage Divider Enable
from Shift Register

DMG2302UK-7

GND Feedback Signal

to NRF Px.xx

Figure 4.16: Circuit for connecting the programmable header pin to an analog pin on the nRF52840 SoC.

Programmable Header Pin as Ground

As shown in Figure 4.17, an N-channel MOSFET controlled by the decoder connects
a programmable header pin to ground. While using an analog switch would entirely
disconnect a line, MOSFETs are more suitable in this part of the circuit as they support
higher currents and are available in smaller package sizes. CircuitGlue uses MOSFETs
that support up to 2.8A of continuous current.

64

4.6. CIRCUITGLUE HARDWARE DESIGN

P(x)
N-Channel
Control Signal MOSFET

from Decoder [01]

DMG2302UK-7
GND

Figure 4.17: Circuit for connecting the programmable header pin to ground.

Programmable Header Pin as Power

Similar to the connection to ground, the P-channel MOSFET in Figure 4.18 is used for
connecting a programmable header pin to the programmable voltage line (Figure 4.12).
A signal translator consisting of an N-channel MOSFET translates the signal from the
decoder as a P-channel MOSFET requires the control voltage to be in the same range as
the source voltage (1.8V-12V). A diode prevents reverse current through the P-channel
MOSFET, avoiding issues when the programmable header pin is used for digital or
analog signals of a voltage higher than the programmable voltage.

Programmable Power Line
from Power Unit
(1.8V—-12V)

P-Channel
Control Signal Signal Y MOSFET
from Decoder [11] Translator
DMG2305UX-7

P(x)

PMEG4020

Figure 4.18: Circuit for connecting the programmable header pin to the programmable voltage level.

4.6.4 Circuit Board Design and Manufacturing

To realize the CircuitGlue board, we combined all building blocks on a single, four-layer
PCB measuring 125 by 50mm. The final iteration uses 229 electronic components on
both sides and for this version of our prototype, components were manually placed and
soldered using a reflow oven. We carefully chose commodity components wherever
possible to minimize cost and maximize supply chain flexibility. When manufacturing
ten prototypes, the cost of the CircuitGlue PCB is around $8 (from JLCPCB™") plus $49
for all components (from OctoPart'?). This drops to around $0.50 per PCB and $26 for
component quantities of 1k pieces. Given the predominance of commodity components,
the component cost will likely be significantly less on the Chinese market.

https://jlcpcbh.com
2https://octopart.com

65

https://jlcpcb.com
https://octopart.com

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

4.7 CircuitGlue Software Architecture

4,71 CircuitGlue Firmware

The CircuitGlue firmware runs on the nRF52840 SoC and drives all functionalities of the
board. If an internal error occurs, the CircuitGlue board disconnects its programmable
header pins to avoid damaging any electronics. It furthermore notifies the user by
blinking two LEDs on the CircuitGlue board. Such errors include internal components
that are not responding as expected, or when the measured voltage or current is outside
the required range due to a short circuit or component failure.

The CircuitGlue firmware is written in the C programming language, as it offers easy
access to all peripherals and registers of the nRF52840 SoC. We built on top of several
existing software libraries: the standalone nrfx drivers'® and libraries provided by the
nRF5 SDK* ease setting up peripherals, such as timers and communication protocols;
and the existing platform-agnostic implementation of the Jacdac protocol® and is
extended with a platform-specific implementation of peripherals for the nRF52 family
(e.g., half-duplex RS232, 12C, SPI, GPIOs, ...) that we wrote ourselves. The CircuitGlue
firmware is available on GitHub.

The firmware is compiled using the arm-none-eabi compiler'’. To flash the compiled
hex file, we use Device Firmware Upgrade (DFU) over USB. To generate a DFU package
from the compiled hex file, we use the “nrfutil pkg generate” tool and flash the DFU
package using “nrfutil dfu USB-serial”. To enable DFU on the nRF52840 SoC, we flashed
the precompiled bootloader, which is provided by Nordic Semiconductor. Alternatively,
the hex file can be flashed using the “nrfjprog” command or by connecting an external
programmer to the Serial Wire Debug (SWD) pins on the CircuitGlue board.

4.7.2 CircuitGlue Configuration Tool

The CircuitGlue configuration tool is implemented as a web interface. The configuration
tool uses Jacdac?® over either USB CDC or WebUSB" to communicate with connected
CircuitGlue boards. A JSON database contains all technical specifications, such as
required voltages and pinouts, and the UF2 firmware file for each supported module.
When users configure a module, the configuration tool loads its specifications from the
database and sends it to the CircuitGlue board. After that, the firmware containing the
translation code is flashed to the CircuitGlue board.

Before sending the specifications and firmware, the CircuitGlue configuration tool

Bhttps://github.com/NordicSemiconductor/nrfx
Yhttps://www.nordicsemi.com/Products/Development-software/nrf5-sdk
Bhttps://github.com/microsoft/jacdac-c
https://github.com/MannuLambrichts/CircuitGlue
7https://developer.arm.com/downloads/-/gnu-rm
Bhttps://github.com/microsoft/jacdac-ts
Bhttps://wicg.github.io/webusb/

66

https://github.com/NordicSemiconductor/nrfx
https://www.nordicsemi.com/Products/Development-software/nrf5-sdk
https://github.com/microsoft/jacdac-c
https://github.com/MannuLambrichts/CircuitGlue
https://developer.arm.com/downloads/-/gnu-rm
https://github.com/microsoft/jacdac-ts
https://wicg.github.io/webusb/

4.7. CIRCUITGLUE SOFTWARE ARCHITECTURE

automatically enables the CircuitGlue DFU bootloader on the CircuitGlue board. This
bootloader allows for convenient firmware updates over Jacdac and disables all pro-

grammable pins to protect the connected module from previous configurations.

After flashing, the firmware sets the signal and programmable voltage (Section 4.6.2) and
waits until the programmable voltage reaches its configured setting. Next, the firmware
programs each pin assignment in the shift registers using four bits per programmable
pin, as described in Section 4.6.3. After activating all shift registers, the function of
each programmable header pin is assigned. The firmware then initializes all necessary
peripherals for the digital communication protocols. Finally, the firmware instantiates
the translation code necessary for translating the module’s functionality to Jacdac
services, which makes the module available on the Jacdac bus.

4.7.3 Circuit Diagram Generator

As demonstrated in the Walkthrough (Section 4.2), once a module is working as desired,
the CircuitGlue configuration tool offers a circuit diagram generator feature to assist in
connecting it directly to a development board. To support this feature, we developed a
pin mapping algorithm. For every pin on every module, our algorithm first assigns a
compatible pin on the development board without considering specific voltages. For
the final pin assignment, the algorithm aims to maximize the number of modules that
can be connected, similar to the routing strategies of PaperPulse [Ramakers, 2015]. For
example, the SCL and SDA pins used for I2C will only be used for digital signals when
all other digital pins are already in use. The algorithm then compares the voltages
available on the development board with the voltages required by the modules and adds
logic-level converters and an external power supply when needed. This power supply is
selected based on the highest voltage needed, and DC-DC converters are additionally
added to step down to other voltage levels.

Some electronic components, such as a DC motor, require additional driver circuits.
To support this, we extended our JSON database, detailing the pinout and operating
voltages for all modules, with an optional field that details the required driver module
needed when converting from CircuitGlue to a custom circuit diagram. The circuit
diagram generator uses this field to initiate additional driver components, such as the
L298N DC motor driver.

In order to reuse application logic after converting to a custom circuit diagram, modules
still need to be operational over Jacdac, even though they are directly connected via
digital, analog, I2C, or SPI peripherals. To realize this, the micro:bit development
board runs a custom version of the CircuitGlue firmware, which previously ran on the
CircuitGlue Board, and the CircuitGlue configuration tool activates the same translation
code on the micro:bit.

67

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

4.8 Prototyping Styles and Benefits

The unique features of CircuitGlue facilitate prototyping with electronics and thus
enable several novel prototyping styles. Below, we discuss these novel opportunities.

4.8.1 Understanding, Testing and Comparing Modules

It is often challenging for novices in electronics to select appropriate electronic compo-
nents when prototyping an interactive system [Swierczyriski, 2014]. Example decisions
include whether to use an accelerometer or gyroscope, ultrasonic distance sensor or
infrared distance sensor or what type of temperature sensor is more suitable. To make
an informed decision, novices traditionally consult online articles, books, or datasheets;
this can be time-consuming, especially as many such resources are not written for
novices [Swierczynski, 2014]. A complementary approach that may be useful in some
cases is to simulate certain electronic components or sub-circuits, although this is rarely
a substitute for experimenting with and verifying the operation of real components,
especially in interactive systems where physical behavior, such as measuring accel-
eration or movement, often impacts the overall user experience. Using CircuitGlue,
electronic components are instantly operational, and their basic operations can be tested
immediately via the Jacdac dashboard—which renders real-time digital twins of all
components on the Jacdac bus—without writing application logic. As such, novices
build an intuitive understanding of components and can decide between components
by observing differences in output (Figure 4.19). Testing components with CircuitGlue
can, therefore, complement existing resources for understanding electronics because

these practical tests confirm basic knowledge or help fill in knowledge gaps.

The Jacdac dashboard is primarily designed to support exploration and fault-finding; a
self-contained interactive system requires custom application logic to define the desired
behavior based on its various components. This application logic can be written to run
on a PC, for example, in Python, .NET or a web app, or on an embedded microcontroller;
in all cases, apps are typically simple compositions of the Jacdac services provided
by the relevant modules, simplifying application development. This alleviates many
compatibility issues and reduces the complexity of the testing process. We refer the
reader to Jacdac [Devine, 2022] for more details.

4.8.2 Rapid Prototyping with Heterogeneous Modules

In addition to quickly getting a single module up and running, multiple CircuitGlue
boards are easily interconnected using Jacdac. As such, interactive systems consisting of
components working with different protocols and voltages (Figure 4.20) are realized
in a few minutes. Small electronic modules, requiring only a few pins and the same
operating voltage, can even connect to a single CircuitGlue board. In many ways, this
prototyping style combines the ease of use of TYPE 3 integrated modular systems with
the versatility and flexibility of TYPE 2 breakout boards and modules.

68

4.8. PROTOTYPING STYLES AND BENEFITS

To USB-C
power supply
or computer

MMAB8451

e Jacdac e Micro USB

Figure 4.19: Comparing two different types of accelerometers in the Jacdac dashboard by using two
connected CircuitGlue boards.

The circuit diagram generator, covered in the next section, helps with reusing CircuitGlue
boards within a prototyping process. Application logic, defining the behavior of all
components in the sensor system, is easy to write on Jacdac-compatible development
boards, such as the micro:bit [microbit, 2022], Raspberry Pi [Pi, 2022b], or ESP32 [Espres-
sif, 2022b]. When using MakeCode, which offers seamless support for Jacdac, all
components on the Jacdac bus are available as blocks in the programming environment.
When using other programming languages, such as .NET, Python, or JavaScript/ Type-
Script, modules become available by instantiating the Jacdac client service corresponding
to the module. A client service provides the interface for interacting with the Jacdac
service used by a module.

While it’s theoretically possible to use the circuit diagram generator to design and
implement electronic prototypes without using CircuitGlue as an intermediate evaluation
step, this approach is slower, more fiddly, and may, therefore, not be suitable for those
who are less experienced. By using CircuitGlue to test and verify individual components,
users can gain a practical understanding of how different components work together
and ensure compatibility between them before integrating them into the prototype. This
not only saves time and reduces the risk of errors, but we believe it will also help users
build an intuitive understanding of electronics, which would be beneficial for future
projects.

Even users who only prototype with electronics occasionally often accumulate quite a

69

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

To t

DC Motor

wa

e aiaiiig o

HC-SR04
®
To USB-C : ;.
power supply @
or computer - o

DC Motor

FC-51

e Jacdac e \icro USB

Figure 4.20: Building a prototype using multiple CircuitGlue boards.

few electronic components and modules; when creating a new prototype, it is often more
convenient to buy new ones because existing ones might not be compatible with each
other or have become deprecated, and thus harder to get operational again. CircuitGlue
significantly helps with getting such components operational and ensures compatibility
with different generations of components. Therefore, we believe CircuitGlue can help
reduce the ecological footprint of electronics prototyping.

4.8.3 Facilitate Breadboarding

When a component is powered by a CircuitGlue board, the circuit diagram generator offers
a visual guide on connecting all components on the Jacdac bus directly to a development
board without using CircuitGlue boards (Figure 4.21). During this process, CircuitGlue
ensures all components are still available on the Jacdac bus and compatible with the
application logic, even when they are connected via analog pins or alternative digital
protocols, such as I2C or SPI. This allows for a gradual transition from CircuitGlue
boards to custom breadboard designs and is especially useful when running out of
CircuitGlue boards or when starting with breadboard circuit prototyping. We see this
as a top-down style to prototyping electronics as components are first operational using
CircuitGlue before revealing lower-level wiring details to turn it into a more traditional
breadboard prototype.

4.8.4 Use Third Party Modules with Jacdac Ecosystem

Instead of prototyping an entire system with CircuitGlue, users of the Jacdac modular
system? can occasionally turn to CircuitGlue to make third party modules compatible

Whttps://microsoft.github.io/jacdac-docs/devices/kittenbot/jacdacstarterkitawithjacdapt
orformicrobitv2v10/

70

https://microsoft.github.io/jacdac-docs/devices/kittenbot/jacdacstarterkitawithjacdaptorformicrobitv2v10/
https://microsoft.github.io/jacdac-docs/devices/kittenbot/jacdacstarterkitawithjacdaptorformicrobitv2v10/

4.8. PROTOTYPING STYLES AND BENEFITS

To t

HC-SR04

To USB-C
power supply
or computer

DC Motor 12V 3A power

. £ =
. SN supply

DC Motor

e Jacdac e icro USB f—

Figure 4.21: Building a prototype using a single CircuitGlue board in combination with the circuit
diagram generator fo facilitate building the breadboard circuits.

with this ecosystem. Figure 4.22 demonstrates such a setup in which a Jacdac button,
RGB LED, and temperature sensor interconnect with the SSD1306 display module,
currently not part of the Jacdac eco-system, via a CircuitGlue board.

To P

..... i $SD1306

To USB-C
power supply
or computer

Jacdac
H 2 RGB LED Module

Jacdac

Jacdac Button Module
Temperature Module

e Jacdac e Micro USB

Figure 4.22: CircuitGlue used to extend the Jacdac ecosystem with new modules.

4.8.5 Advanced Use

Users who are more knowledgeable about electronics and embedded programming can
use only parts of the CircuitGlue system in their prototyping practices. For example,
instead of using a separate development board, such as the micro:bit, for running
application logic, one of the CircuitGlue boards can run application logic on its SoC.
When using a CircuitGlue board as such, users have to manually modify the CircuitGlue
firmware to integrate their application logic and compile and flash it to the CircuitGlue

71

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

board. Future research can investigate how to make such features also available to

novices.

To facilitate writing application logic directly into the CircuitGlue firmware, we provide
a basic template using Arduino’s “setup” and “loop” constructs. In the future, we
plan on adding support for the Arduino programming language to allow the use of
Arduino libraries, similar to PlatformIO?'. To enable or disable features provided by the
CircuitGlue firmware, such as programmable voltages or translation to Jacdac, users
can modify a header file containing compile-time configuration options.

4,9 Technical Benchmark

In this section, we report on CircuitGlue’s throughput, latency, analog reading accuracy,
output voltage accuracy, and PWM signal characteristics to help the reader understand
the capabilities and characteristics of CircuitGlue and its impact when used in a
circuit design. All characteristics, except throughput and PWM characteristics, were
benchmarked using the Saleae Logic Pro 8 logic analyzer and averaged over ten trials for
consistency. The circuit design for each of the programmable header pins is identical, so
the reported characteristics below are the same for every pin. We present six separate
requirements; if a module or component fits all these requirements, it is compatible
with CircuitGlue.

1. Voltage range: CircuitGlue supports a programmable voltage range of 1.8 to
12V with 0.1V resolution. The breakout board or component should operate
within this voltage range to be compatible with CircuitGlue. We benchmarked
the programmable power supply’s output voltage when the programmable pin
is configured as Power. Figure 4.23D compares the requested voltages with the
voltage measured at the programmable header pins. The results demonstrate
that CircuitGlue can accurately output a requested voltage within a few millivolts.
As the voltage is programmable from 1.8 to 12V in steps of 0.1V (Section 4.6.2),
CircuitGlue is compatible with most common components and modules.

2. Current rating: CircuitGlue supports currents up to 3 amps. Breakout boards
or components should require, at most, this much current to be compatible with
CircuitGlue.

3. Digital communication interfaces: Similar to other popular development boards
such as Arduino [Arduino, 2022] and micro:bit [microbit, 2022], CircuitGlue
supports common digital communication protocols such as I12C, SPI, and UART,
making it easy to interface with a wide variety of breakout boards and modules.
The microcontroller and digital programmable header pin are connected via a
logic-level converter and an analog switch. The parasitic capacitance of the switch
is up to 35pF when ‘closed’, but more significantly, data throughput will be limited
by the maximum operating speed of the TXS0104 logic level converter, reported in

2https://platformio.org/

72

https://platformio.org/

4.9. TECHNICAL BENCHMARK

the datasheet as 24Mbps when used as push-pull and 2Mbps when open-drain
(see also Section 4.6.3).

To verity the latency introduced by CircuitGlue in practice, we benchmarked the
delay between pulling a programmable header pin high and reading the high
voltage at the microcontroller. The test results are shown in Figure 4.23A. As the
latency is only a handful of nanoseconds, CircuitGlue will not noticeably impact
the overall performance of most prototypes.

The DC input and output impedance and leakage current during digital commu-
nications are dominated by the characteristics of the CircuitGlue microcontroller.
. Analog communication interfaces: CircuitGlue supports modules that commu-
nicate over analog signals of up to 12V. We measured the accuracy of analog
readings by configuring an analog channel of our logic analyzer and connected it
to a CircuitGlue programmable header pin configured as an analog input. We
then applied a voltage to this pin and compared measurements from the logic
analyzer with those measured by the CircuitGlue microcontroller. We conducted
these measurements twice, once with our voltage divider enabled (allowing input
between 0 and 12V) and once with it disabled (allowing input between 0 and 3.3V).
Results are shown in Figure 4.23B-C. We note that readings differ only by a few
millivolts.

In addition to analog voltages, CircuitGlue also supports modules that use a
variable resistance as output, such as a temperature or light sensor. As described
in Section 4.6.3, CircuitGlue has an internal pull-down resistor that can be used to
measure the resistance of a sensor on the module.

As with digital communications, the DC input and output impedance and leakage
current during analog communications are dominated by the characteristics of the
CircuitGlue microcontroller.

. Pulse width modulation: CircuitGlue can generate a Pulse-Width Modulation
(PWM) signal in two ways: through a microcontroller-generated PWM signal or
by rapidly switching between the Power and Ground functions of a CircuitGlue
programmable pin. The best method to use depends on the requirements of the
component or module being driven. Microcontroller-generated PWM signals are
generally preferred for their flexibility and precision, while Power and Ground
switching is used when non-standard voltages or higher currents are required.
For example, an Electronic Speed Controller (ESC) module will work well with
a microcontroller-generated PWM signal to set the speed of a brushless motor,
while RGB LEDs and DC motors use the Power and Ground functions as they
require different voltages and/or currents.

When a microcontroller-generated PWM signal is used, the frequency and duty
cycle are directly controlled by the nRF52840 microcontroller. CircuitGlue supports
PWM frequencies ranging up to 16MHz, and the duty cycle can be adjusted with a
resolution of 8 bits. As the logic level converter (Section 4.6.3) can change its state in
less than 10ns (5ns +3ns), it doesn’t limit the frequency of the PWM signal. On the

73

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

other hand, if the Power and Ground functions are used to control the PWM signal,
the frequency is limited by the characteristics of the electronic components used
to switch Ground and Power (Section 4.6.3 and Section 4.6.3). According to the
datasheets of the relevant MOSFETSs, shift register, and decoder ICs (Section 4.6.3),
switching from Ground to Power takes around 40ns, while switching from Power
to Ground takes 120nS. To provide adequate time for charging and discharging,
we limit the PWM frequency to IMHz.

6. Physical interface: As described in Section 4.4.2, CircuitGlue uses a physical
interface consisting of a single row of eight header pins that most common breakout
boards can directly plug into. However, there may be situations where a module’s
pinout does not match this configuration, such as modules that expose two rows
of pins or have a different connector style. In such cases, an adapter board or a
small breadboard can be used to connect the module to CircuitGlue.

3.3V 5,2 2,71 ns 2,000 2,002 0,009 V
5V 5 2,86 ns 3,000 2,995 0,014 V
4,000 3,996 0,009 V
5,000 4,999 0,020 V
6,000 5,995 0,022 V
2,964 2,975 0,009 V 7,000 7,014 0,030 V
4,989 5,037 0,008 V 8,000 7,996 0,011 V
12,26 12,375 0,016 V 9,000 8,998 0,014 V
10,000 10,004 0,030 V
11,000 10,998 0,025 V
12,000 11,992 0,013 V
1,789 1,781 0,005 V
2,959 2,969 0,003 V

Figure 4.23: Results of the technical evaluation of CircuitGlue.

4.10 Preliminary User Evaluation

CircuitGlue combines the versatility and extensibility of TYPE 2 breakout boards with
the ease of use of TYPE 3 integrated modular systems. To collect users’ feedback
and better understand the utility of CircuitGlue for electronic novices when building
interactive prototypes, we conducted a preliminary user evaluation. This user evaluation
aimed to better understand the differences when prototyping an electronic system using
CircuitGlue versus a traditional approach, in which TYPE 2 breakout boards are wired
to a development board using breadboards and jumper wires.

74

4.10. PRELIMINARY USER EVALUATION

4.10.1 Participants

We recruited six participants from our research institution, all aged between 25 and 36.
Before recruitment, we assessed candidates” experience level by asking them to elaborate
on previous projects they had built. As CircuitGlue is specifically designed for novices,
we recruited five participants who self-claimed having a rough to basic understanding
of electronics prototyping and one participant (P5) with no prior experience building
electronic circuits. Participants with a basic knowledge of electronics had only partici-
pated in small projects using cheap and common components such as LEDs, buttons,
and occasionally breakout boards. The study started with a short interview to further
assess the participants” background and familiarity with prototyping workflows.

4.10.2 Procedure

The study design consists of two conditions, which we refer to as CIRCUITGLUE and
BREADBOARD. In both conditions, participants were asked to prototype the smart
desktop fan prototype, introduced in the Walkthrough (Section 4.2). Both conditions
used the BBC micro:bit as development board, a temperature sensor breakout board (KY-
015), a PIR motion sensor breakout board (HC-SR501), and a 12V PC fan consisting of a
DC motor and built-in protection circuit. The temperature sensor and PIR motion sensor
communicated using digital GPIO signals and required 3.3V and 5V, respectively, while
the PC fan required a 12V PWM signal. In the CIRCUITGLUE condition, participants
had access to three CircuitGlue boards with Jacdac cables for interconnecting them.
Additionally, we handed participants a one-page printed guide displaying all three
modules and their component names to ease identification. In the BREADBOARD
condition, participants had access to breadboards, jumper wires, a DC-DC converter
module (LM2596), and a DC motor driver (TB6612). Additionally, we gave participants
access to a printout of the breadboard circuit diagram (Figure 4.24) for wiring the smart
desktop fan. The study followed a within-subjects design where the order of conditions

was alternated between participants.

Within the focus of this study, we concentrated on comparing the mechanics of building
an interactive prototype through CircuitGlue versus a standard breadboard with
additional conversion modules and associated wiring. We, therefore, considered the
writing of application logic and the creation of translation code for the modules in
both conditions to be out of scope. We believe this is the basis of a fair evaluation,
because we are focused on the electronics aspects of prototyping, not the ease of writing
code—which would be similar when using microcontroller boards like micro:bit and
Arduino without the help of CircuitGlue

We preconfigured the BBC micro:bit with the necessary application logic written in
MakeCode* and ensured all three modules were supported in both the CIRCUITGLUE
and BREADBOARD conditions. The application logic for the CIRCUITGLUE condition
uses Jacdac blocks to interact with the high-level Jacdac services announced by the

75

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

Temperature/Humidity PIR Motion sensor PC Fan
sensor HC-SR501
KY-015

PZ[3v (__[GND (0v)

Motor driver
TB6612

Connectto 12V, 1A
power supply

12V

Figure 4.24: Breadboard diagram demonstrating how participants of the user evaluation should

J

interconnect all electronic modules.

temperature sensor, PIR motion sensor, and PC fan. In the BREADBOARD condition,
the application logic uses default GPIO functions to interact with the PIR motion sensor
and DC motor driver. In addition, an external library is used to drive the temperature

Sensor.

For both conditions, participants received an introduction during which we demonstrated
how to connect the PIR motion sensor, which they then had to replicate. We asked
participants to think out loud throughout the study and describe their process. We
concluded the evaluation with an interview asking participants about their experience
with both methods. On average, the user evaluation lasted for 1 hour.

4.10.3 Results

While the results presented in this section are still very preliminary, they already show
the usability of CircuitGlue for novices when building electronic prototypes.

On average, participants took 15 minutes (5D=2.6) to complete the breadboard prototype
and 5.2 minutes (SD=1.1) when using CircuitGlue. In the BREADBOARD condition,
participants expressed being concerned about damaging components by accidentally
making faulty connections. All participants described their breadboard prototypes as a
mess of wiring and did not feel confident about powering the prototype on before we
verified it with them. Indeed, we noticed two participants made a mistake while wiring;
after they thought their prototype was finished, we asked some follow-up questions
about the connection wires to guide them to their mistake and self-correct it. We did not
include this additional time in the measurements. In the CIRCUITGLUE condition, P1,

76

4.10. PRELIMINARY USER EVALUATION

P2, P3, and P5 told us they were not very confident that the board had been configured
correctly by the CircuitGlue software, and would have been reassured if they could see
details of the current configuration. This contrasts with P4 and P6, who were under
the impression that CircuitGlue would automatically verify important parameters and
thereby prevent faults if they made a mistake during configuration.

During the post-study interview, we asked participants for each condition how comfort-
able and confident they felt when connecting modules. All participants reported being
more comfortable and confident in the CIRCUITGLUE condition. All participants, how-
ever, had initial concerns about the size and additional cost that comes with CircuitGlue,
especially for simple prototypes. When we explained that only a single CircuitGlue
board is strictly necessary because CircuitGlue’s Diagram Generator can be used after
each component is tested and operational (Section 4.8.3), all participants agreed that
this prototyping style would be practical.

As we gave participants a printout of the exact circuit diagram in the BREADBOARD
condition to accommodate for their limited electronics expertise, this condition is
actually easier than it would likely be in practice. We therefore asked participants if
they think they would be able to build the prototype in the BREADBOARD condition
also without the diagram. All participants thought this would be feasible given enough
time and access to online resources, although P4, P5, and P6 added that they would
only consider starting such a project if absolutely needed.

We finally asked participants which method they would prefer and which they would
potentially adopt when prototyping in the future. All participants preferred CircuitGlue
to quickly test different electronic modules before starting to prototype. While P4 and
P5 would prefer CircuitGlue for any prototype, P1, P2, P3, and P6 reported that this
would depend on the specifics of the prototype, such as the complexity of modules,
application area, and whether the purpose of the prototype is experimentation or
building a specific device. P6 would only use CircuitGlue when boards are at hand. In
addition, P6 also questioned if both methods could be used together and saw potential
in a hybrid approach to offload complex components to CircuitGlue while still wiring
simple components manually, similar to prototyping styles covered in Section 4.8. P5
especially liked that CircuitGlue allows for only concentrating on I/O components and
does not require additional components for conversions.

We did not notice any effect on the order of conditions. Although both conditions
instructed participants to build the same prototype, the process used for interconnecting
components is different and thus requires different knowledge. While the BREADBOARD
condition required users to interconnect modules using individual jumper wires
according to a diagram, the CIRCUITGLUE condition involved plugging in components
on a female header and selecting items from a drop-down menu.

77

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

411 Incorporating User Feedback

Based on the results of the preliminary user evaluation, informal conversations with
potential users, and our experiences during the development and testing of the Cir-
cuitGlue board, we identified several areas for improvement. As a result, we created a
new version of the CircuitGlue board. In addition to enhancing the overall prototyping
experience, we focused on improving the board’s debugging capabilities, allowing us
to push the limits of our design without the need to solder a new board whenever
something failed. Ultimately, the redesign enhances usability, safety, and functionality,
making the board suitable for both novice and experienced users. Figure 4.25 illustrates
the updated CircuitGlue board.

Power board

Figure 4.25: Overview of the updated CircuitGlue board.

The following sections summarize the key changes made to the CircuitGlue board.
Although the board has undergone significant updates, all core functionalities and
prototyping styles remain the same as in the original version.

4111 Modular PCB Design

The CircuitGlue board has been transformed into a modular PCB design, creating
separate PCB boards for power management, control, and handling pin function
adjustments (logic). This modularization, illustrated in Figure 4.26, facilitates debugging
by isolating key sections, enhancing the troubleshooting process during the iterative
design phases. While each CircuitGlue system consists of one controller and one
power management board, up to four logic boards can be connected to the controller

78

4.11. INCORPORATING USER FEEDBACK

board. Given each logic board exposes four programmable header pins, the number of
programmable header pins is increased from 8 to 16. As a result, CircuitGlue can drive
multiple components simultaneously which reduces the overall footprint of a prototype,
or drive a single component with a large number of pins, such as parallel displays?2.

@

Voltage
regulators

©)

Switching pin
assignments

@

Microcontroller @
Switching pin
assignments

Figure 4.26: The updated design of the modular CircuitGlue system with (1) a controller board containing
a System-on-Chip (SoC) for controlling and monitoring the CircuitGlue system, (2) a power board for
voltage regulation and USB-C Power Delivery, and (3) a set of logic boards responsible for switching the
assignment the programmable header pins.

Each modular CircuitGlue board is equipped with its own microcontroller and communi-
cates via the I2C protocol with the controller, which retains the nRF52840 microcontroller
from the initial design as SoC. The power management board utilizes the STM32G071
microcontroller?, which integrates a USB Type-C Power Delivery controller for negotiat-
ing voltages with USB-C power supplies. The logic board is managed by the STM32G070
microcontroller?, which has sufficient GPIO and analog pins for monitoring the status
of all its hardware components.

4.11.2 Power Management

While the original CircuitGlue board already included over-voltage and over-current
protection sensors, the effectiveness of these protections was primarily dependent on
software response time. In our experience, many components can tolerate voltage and
current spikes long enough for the System-on-Chip (SoC) to react. However, adding
hardware components that respond more quickly, such as programmable fuses and back
EMEF protection diodes, would further safeguard the board and its connected modules.

As such, the power management system has been significantly enhanced with the

2https://www.digikey.com/en/products/detail/futaba-corporation-of-america/ELF1101AA/146
69494

2https://www.st.com/en/microcontrollers-microprocessors/stm32g071kb.html

2https://www.st.com/en/microcontrollers-microprocessors/stm32g070rb.html

79

https://www.digikey.com/en/products/detail/futaba-corporation-of-america/ELF1101AA/14669494
https://www.digikey.com/en/products/detail/futaba-corporation-of-america/ELF1101AA/14669494
https://www.st.com/en/microcontrollers-microprocessors/stm32g071kb.html
https://www.st.com/en/microcontrollers-microprocessors/stm32g070rb.html

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

addition of eFuses, advanced voltage regulators, and crowbar circuits. These components
ensure efficient power handling and provide robust protection against electrical faults
such as voltage spikes or short circuits. These improvements not only safeguard the
hardware but also create a safer learning environment, encouraging users to explore
and innovate with reduced risk of failure. Figure 4.27 provides a high-level overview
of the improved power management system. In comparison to the original design,
the new version of CircuitGlue features two USB-C ports: one data port dedicated to
all data communications with the PC accepting 5V and one power port that supports
USB-C Power Delivery (PD) and accepts up to 16V. Using this approach, CircuitGlue
can be powered through a standard USB-A port on the computer, where the power port
provides an optional input in case voltages higher than 5V are required. Additionally,
the board can also be powered through the Jacdac port and provide power to the Jacdac
bus itself. The CircuitGlue power board automatically switches between USB or Jacdac
as input using a two-to-one power multiplexer with priority input set to USB, meaning
the board will always choose the USB power source in case both USB and Jacdac are
provided. This wide variety of power options ensures the CircuitGlue board can be
used in various scenarios and conditions.

Jacdac 3.3V to power all
Power Circuit 3.3V Regulator ’ microcontrollers

TPS62A0

2:1 Auto
Jacdac
v Connector efuse I M o Feedback o Feedback

TPS25942A 3.3V to power all 3.3V
3.3V Regulator eFuse — T electronic components

TPS63802 TPS25942A Circuit

USB-C

Data Input

LD sv

TPS2116

TPS25942A Feedback o Feedback

5V to power all 5V
5V Regulator eFuse Crowbar electronic components

PS6380 25942A eeui
TPS63802 TPS2594 Circuit

A Feedback 3.3V - 16V to power

D USB-C PD m 3 modules in the

5V/9V/12V/15V Power Input —— programmable header

12C nal
from NRFSZMCU €= Feedback i

Figure 4.27: Block diagram of the power board illustrating all voltage regulators responsible for providing
the voltage levels used by the CircuitGlue logic boards.

4.11.3 Changing Pin Assignments

As shown in Figure 4.26, the CircuitGlue controller board manages the power board and
logic boards necessary to correctly assign the functions of the programmable header
pins. Figure 4.28 shows a more detailed overview of the logic board, which is responsible
for switching the assignments of the programmable header pins. The dashed blocks
in this figure represent the electronic circuit for setting the assignment of exactly one
programmable header pin; four such identical blocks are present on a single logic
board. Each of these blocks embeds the circuitry to either configure the programmable
header pin (1) as a General Purpose Input/Output (GPIO) pin, (2) as an analog input
pin, (3) as a connection to ground, a programmable voltage supply, or output a PWM

80

4.11. INCORPORATING USER FEEDBACK

signal. Each logic board can select the programmable voltage to be either 3.3V, 5V, or an
adjustable voltage that is shared over all logic boards. The selection circuit is illustrated

s Signal -
_) Voltage Selector
from NRF52 MCU

in Figure 4.29.

v

8

: |

5 :

I :

|

c :

.2 H

- =

2 i
I Programmable Header I
P(0) P(1) P(2) P(3)

Figure 4.28: Block diagram of the logic board, which is responsible for changing the assignments of four
programmable header pins.

Control Signal DY

Analog
Switch

3.3V Line _./
(" C—

from Power Unit

Control Signal w TPS22811

Analog
Switch

5V Line - /. & Output Voltage Line

from Power Unit (3.3v-16V)

TPS22811
Control Signal DY

Analog Control Discharge Circuit
Programmable Switch Signal

Power Line _0/._

from Power Unit

GND

TPS22811

Figure 4.29: Block diagram illustrating the circuit for selecting the output voltage in each logic board.

To create a safer and more controlled environment for experimentation, the redesigned
CircuitGlue board integrates high-end components with advanced monitoring features.
This upgrade provides finer control over voltage and current, which is essential for
monitoring, error detection, and educational purposes to explain the workings of
plugged-in components. The basic MOSFET setups have been replaced with an
integrated H-bridge IC that offers more sophisticated control options, including built-in
Pulse-Width Modulation (PWM) capabilities. This IC also features monitoring functions

81

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

for current and voltage, helping to prevent overcurrent and over-voltage situations that
could damage components. Figure 4.30 shows the updated circuit for connecting a
programmable header pin to either ground, power, or output a PWM signal.

Output Voltage Line
(3.3V-16V)

Half Bridge
IC
P(x)
Control Signals =

DRV8311P
GND

Figure 4.30: Circuit for connecting the programmable header pin to ground, power, or output a PWM
signal.

The circuit designed to protect the voltage on the GPIO lines, which originally used a
comparator and an AND gate to automatically disconnect the GPIO line when a higher
voltage was detected (Section 4.6.3), has been replaced with an integrated analog switch.
This new switch can handle voltages up to 16V with a supply voltage as low as 3.3V, and
automatically disconnects when voltages higher than the supply voltage are detected.
While the original version of CircuitGlue differentiates between signals based on their
function, such as analog or digital, the new design differentiates based on the voltage
level. As a result, protection circuits such as clamping diodes can be more tailored,
and the circuit design becomes less complex. Using a multiplexer, the logic board
automatically routes the signals through the correct paths, such as logic level converters.
Figure 4.31 shows the design of the circuit handling digital signals up to 5V, and analog
signals up to 3.3V.

Analog (3.3V) to STMMCU <€
3.3V Line

to STM MCU from Power Unit l
Analog

Control Signals == SPTP i
& Switch Sw“:h/_ P
GPIO to NRF Prox ——et © v (x)

Control Signals ==
ADG4612

TS5A3359

5V Line 5V Line
from Power from Power Unit

Unit

3.3V Line
from Power
o Analog
Logic Level SWIt.ch/‘
Converter

Control Signals =3
TXS0104 ADG4612

Figure 4.31: Circuit for connecting the programmable header pin to a digital high-speed GPIO pin on the
nRF52840 SoC.

Lastly, to handle analog voltages higher than 3.3V, the logic boards uses a voltage
follower circuit and voltage divider to translate the input voltage to the appropriate

82

4.11. INCORPORATING USER FEEDBACK

levels. In comparison the the original version of CircuitGlue, analog signals are read by
the STM microcontroller on the logic board rather than the SoC in the controller board.
As a result, the new design of CircuitGlue is not limited by the number of analog pins
of the SoC in the controller board. Figure 4.32 illustrates the circuit for the high-level
analog signals.

Voltage Follower

als =3 -

TSB514
5V) to STM MCU

GND

Figure 4.32: Circuit for connecting the programmable header pin to an analog pin on the STM MCUL

By incorporating these advanced features, CircuitGlue offers a more robust and versatile
platform that supports innovation while emphasizing user safety and education. The
monitoring and protection features provide immediate feedback and a deeper under-
standing of electrical principles, promoting a top-down learning approach where users
can observe component behavior before delving into more complex technical details.

4.11.4 Enhanced Visual Feedback

Modules and components are instantly operational with CircuitGlue and do not require
users to understand all the characteristics or workings first. Although our approach
initially hides aspects of the electronics in the ‘black box” formed by the CircuitGlue
board, we believe it offers opportunities for a new top-down learning experience, in
which students first build prototypes they are highly interested in and later discover
and learn about lower level details by conversion to a breadboard circuit (Section 4.8.3).

However, during the preliminary user evaluation, it became apparent that some users
were confused about the status of the CircuitGlue board and desired more transparency
in the board’s operation. In response, the redesigned version of CircuitGlue incorporates
RGB LEDs to provide enhanced visual feedback. These LEDs give instant visual cues
about the board’s operational state, making it easier for users to understand and monitor
what is happening with their setup at a glance.

While users may not immediately understand the meaning of different LED colors, the
presence of visual indicators alone helps in acknowledging activity and functionality.
This feature is especially beneficial for beginners, who often find comfort in visual
feedback that confirms their actions have had an effect. This can make the learning
process more intuitive and reduce the need for complex diagnostic tools, thereby
lowering the barrier to entry for electronics prototyping.

83

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

4.11.5 CircuitGlue Configuration Tool

Alongside the hardware enhancements, the CircuitGlue interface has been upgraded
to provide a more detailed visual representation of the board’s status. This improved
interface allows users to monitor the operational state of CircuitGlue more effectively,
facilitating a clearer understanding of ongoing processes and aiding in the identification
of potential issues. As shown in Figure 4.33, the updated interface displays a setup
where one DC motor is connected and managed through the Jacdac motor service (a),
while an RGB LED module is configured but not yet managed (b). Additionally, it
shows the configuration of a second DC motor, which currently has an error icon due to

incompatibility with the existing power settings (c).

CircuitGlue Home ar -) % DISCONNECT

e [0 AUTOSTART | 4+ X Simulators
DC Motor G
connected to: #0 @ @ smuste @ = § & J = & orcick +
status: running
we © ° \/ e
G @ F AY80

DC Motor [DC-motor] v

@ potentiometer3 button3 rotaryEncoder3 motor3

led3

!o @K.

Figure 4.33: Redesign of the CircuitGlue interface, with (a) an active DC motor, (b) a configured RGB
LED module, and (c) a second DC motor being configured.

4,12 Discussion and Future Work

Throughout this chapter, we have highlighted how CircuitGlue combines the user-
friendly nature of integrated modular systems, commonly known as TYPE 3 electron-
ics [Lambrichts, 2021], with the adaptability and flexibility found in breakout boards
and modules, referred to as TYPE 2 electronics [Lambrichts, 2021]. While components
and modules require configuration before use, we foresee the development of an online
repository of reusable configurations that would simplify this process. Unlike con-
ventional modular electronics toolkits that often restrict users to specific ecosystems,
CircuitGlue is designed to be versatile, allowing the integration of modules from any
supplier, including those outside the CircuitGlue or Jacdac ecosystems. This versatility
addresses a significant limitation identified in the literature, as it enables users to
incorporate a wider range of components into their projects. Furthermore, the circuit
diagram generator (Section 4.8.3) allows users to transition smoothly from using Circuit-
Glue boards to standard breadboard prototyping, supporting iterative development by
reducing initial barriers [Shneiderman, 2006] without limiting what can be built and

84

4.12. DISCUSSION AND FUTURE WORK

without increasing the ultimate cost and complexity of the final implementation.

Our preliminary evaluations have shown that CircuitGlue greatly simplifies the pro-
totyping process for beginners, making it nearly three times faster and significantly
reducing errors. This ease of use is especially beneficial for those who want to quickly
build prototypes without becoming overwhelmed by the technicalities of circuit design.
CircuitGlue’s bus architecture supports the creation of large-scale prototypes involving
multiple modules, although such projects would require several boards. However, even
with just a single CircuitGlue board, users can build extensive prototypes by iteratively
replacing CircuitGlue interfaces with custom breadboard circuits once each component
or module is tested and operational (Section 4.8.2).

Both our experience with CircuitGlue and its technical evaluations indicate strong
compatibility with a broad range of existing modules and suggest it will remain
compatible with future developments. Despite this, there are opportunities for further
enhancements, such as increasing voltage support up to 24V for driving larger inductive
loads?. Introducing a constant current source could also provide more control over
the current on universal header pins, which would be advantageous for operating
components like LEDs without resistors and for using industrial protocols that rely on a
"4 to 20mA current loop." Additionally, integrating a Digital-to-Analog Converter (DAC)
could allow for precise output voltages, useful for applications such as audio processing.
Future versions of the CircuitGlue board could also be made more compact by placing
components on both sides of the PCB and utilizing smaller IC packages where feasible.

A key feature of CircuitGlue is its circuit diagram generator, which facilitates a seamless
transition from guided modular prototyping to more advanced hardware assembly using
breadboards and jumper wires. While the current algorithm efficiently creates wiring
diagrams that ensure component compatibility, there is potential to enhance its flexibility
and optimize the placement of components in the diagram. Future improvements could
include developing a more advanced algorithm that automatically combines necessary
conversion components, such as level shifters and voltage regulators, based on the
specific needs of the components being used. This would allow the generator to
dynamically determine the optimal number and types of converters required, improving
power efficiency and communication compatibility. For example, when generating the
diagram for two DC motors, CircuitGlue will add two separate motor drivers, even if a
single motor driver can drive two motors at the same time.

Moreover, CircuitGlue has significant potential to expand its educational capabilities
by leveraging its extensive knowledge of the plugged-in electronic component. Future
work could provide users with detailed explanations of key concepts such as voltage
levels, logic levels, and communication protocols. When generating a circuit diagram,
the software could display contextual information about each component’s voltage
requirements, the function of any added conversion components, and the protocols used

Phttps://www.adafruit.com/product/5141

85

https://www.adafruit.com/product/5141

CHAPTER 4. PLUG-AND-PLAY HARDWARE THROUGH CIRCUITGLUE

for communication. This information could be presented through interactive tutorials
or tooltips, helping users develop a deeper understanding of the components and their
interactions.

To further enhance the educational experience, CircuitGlue could introduce structured
learning modules that progressively cover more advanced topics, such as signal integrity,
power distribution, and the fundamentals of analog and digital electronics. By gradually
decreasing automation and encouraging users to make more decisions about component
selection and wiring, CircuitGlue could foster a more hands-on learning environment
that promotes exploration and experimentation. Adding display elements like an
OLED or LCD screen next to the header pins could provide real-time feedback on the
current configuration, enhancing both usability and learning. Additionally, exploring
the development of a wireless, battery-powered CircuitGlue board with the ability to
expose connected modules over a wireless Jacdac implementation could offer valuable
insights into the behavior of sensors and actuators in real-world conditions, outside of
controlled environments.

Future research should also focus on evaluating CircuitGlue over an extended period
of time to understand its long-term benefits and explore how its features can be
optimized for a broader user base. Empirical studies should examine the platform’s
effectiveness in enhancing the users’ experience in electronics prototyping and its impact
on learning outcomes. Moreover, a detailed technical evaluation of the CircuitGlue board,
including assessments of analog crosstalk, slew rate, and characteristic impedances
across different frequencies, would offer valuable insights into its performance and areas
for enhancement. This comprehensive analysis can help identify potential limitations

and inform further refinements.

4.13 Summary

This chapter introduced CircuitGlue, an electronic converter that automates the process
of interconnecting heterogeneous electronic components and modules by ensuring
voltage levels, interface types, communication protocols, and pinouts are compatible.
Each pin in the programmable header of the CircuitGlue board can support either power,
analog signals, or digital communication. We demonstrated several new prototyping
styles created by CircuitGlue and evaluated their usability by conducting a preliminary
user study with six participants. Their responses indicate that CircuitGlue significantly
speeds up building electronic prototypes and is likely to accrue the greatest benefits in
educational settings and for makers who quickly want to prototype something. While a
more extensive study over a longer period is necessary to fully understand its impact,
these initial findings indicate that CircuitGlue is a valid solution for addressing hardware
compatibility issues (Q3). Furthermore, our technical evaluation demonstrates that
there are minimal trade-offs for typical prototyping tasks, effectively addressing Q2.

86

4.13. SUMMARY

The development and preliminary evaluation of CircuitGlue, as presented in this chapter,
highlight its significant potential in advancing electronics prototyping. CircuitGlue’s
design addresses the compatibility challenges faced when integrating various hardware
components, thereby fulfilling the second research goal (G2). It simplifies hardware
assembly by enabling software-configurable pin assighments, protocol translations, and
voltage conversions. These features make CircuitGlue particularly valuable for beginners
and those looking to expedite their prototyping process without being constrained by
the technical complexities typically associated with electronics design.

87

5

PLuGg-AND-PLAY SOFTWARE DRIVERS

TaroUuGH LocicGLUE

Motivation

Building on the development of CircuitGlue discussed in Chapter 4, we identified
that while hardware integration challenges were addressed, similar issues persisted
in the software domain. This realization led to the creation of LogicGlue, a novel
software glue designed to extend the principles of seamless integration into software.
LogicGlue simplifies the electronics prototyping process by enabling the development of
platform-independent drivers and hardware-independent application logic, effectively
addressing software compatibility challenges (G3).

LogicGlue specifically addresses research question Q3, which explores strategies for
overcoming compatibility issues between hardware and software components in physical
computing. Traditional prototyping tools often face limitations due to the tight coupling
of drivers and hardware, making it difficult for developers to adapt their projects to
different platforms or integrate various components without extensive modifications.
By introducing a universal driver specification, LogicGlue ensures that software written
for one hardware setup can be effortlessly ported to another, promoting flexibility and
reducing the need for redundant coding efforts.

Although this chapter does not include a formal user study to evaluate the usability of
LogicGlue for various user groups, its design is inherently grounded in the practical
needs observed during the development and deployment of CircuitGlue. The challenges
faced in hardware integration directly informed the features of LogicGlue, ensuring
that it effectively meets the requirements of diverse users working with heterogeneous
hardware components. Furthermore, this chapter demonstrates that LogicGlue supports
advanced programming structures with only minimal performance latency, addressing
research question Q2. By prioritizing ease of use and maintaining hardware-specific func-
tionalities, LogicGlue contributes to democratizing physical prototyping and lowering
the barriers to electronics prototyping.

88

5.1. INTRODUCTION

This chapter is based on the conference proceedings paper, “LogicGlue: Hardware-
Independent Embedded Programming Through Platform-Independent Drivers”, which
is submitted for the “ACM SIGCHI Symposium on Engineering Interactive Computing
Systems”. If accepted, the paper will be presented at the EICS conference in 2025 in
June, Germany.

5.1 Introduction

Over the past decade, advancements in microcontrollers, sensors, and actuators have
integrated embedded systems into many aspects of daily life. This integration has
democratized prototyping, enabling students [microbit, 2022], hobbyists [Arduino, 2022],
and programmers to create electronic projects. A key factor in this democratization
is the extensibility of microcontrollers with various third-party components and the
availability of software libraries, such as the popular Arduino libraries [Arduino, 2024a],
which facilitate programming.

Software for embedded systems typically includes three essential elements: low-level
drivers, high-level programming libraries, and application logic. Low-level drivers
manage direct communication between electronic components and the microcontroller,
handling hardware-specific registers and protocols. For example, the SSD1306 OLED
display!® driver controls hardware registers via 12C or SPI protocols to update pixels
and adjust settings like brightness. These drivers simplify the complex details of
communication protocols and hardware registers, enabling programmers to focus on
higher-level tasks instead of dealing with intricate timings and specific sequences
required for hardware operations. High-level programming libraries provide an
additional layer of abstraction, simplifying hardware interaction and making components
more accessible to programmers. For instance, the Adafruit_SSD1306 library? allows
developers to display text on the SSD1306 display without dealing with pixel-level
operations.

While low-level drivers and high-level programming libraries significantly lower the
barrier for programming embedded systems, they often come as tightly coupled
packages specific to certain components and platforms, which limits compatibility and
flexibility significantly. For example, the DHT sensor library?, developed for the DHT11
temperature sensor, is not compatible with, for example, the DS18B20 temperature
sensor. Despite offering similar functionalities, such as reading the temperature in
Celsius or Fahrenheit, the library for the DHT11 temperature sensor embeds low-level
driver functions that are specific to the DHT11 sensor, such as data reading methods
and communication protocols. Moreover, many libraries are designed for specific
platforms, like Arduino [Arduino, 2022], making them incompatible with others such

L https://www.arduino.cc/reference/en/libraries/ssd1306/
2https://github.com/adafruit/Adafruit_SSD1306
3 https://www.arduino.cc/reference/en/libraries/dht-sensor-1library/

89

https://www.arduino.cc/reference/en/libraries/ssd1306/
https://github.com/adafruit/Adafruit_SSD1306
https://www.arduino.cc/reference/en/libraries/dht-sensor-library/

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

as Raspberry Pi [Pi, 2022b] or micro:bit [microbit, 2022]. This tight coupling presents
significant challenges for developers in finding the appropriate library for a component
and ensuring compatibility with their development platform.

Some generic libraries, like the Adafruit GFX Graphics Library*, offer broader compati-
bility with third-party components by providing a range of abstractions over various
low-level drivers. However, these libraries often cannot leverage each component’s
unique features and extending them to support new functionalities usually requires
extensive knowledge of their architecture. For example, the Adafruit GFX library is pri-
marily designed for displays communicating over SPI protocols, making it challenging
to drive displays over 12C, such as the SSD1306.

High-level communication protocols like Jacdac [Devine, 2022] and CoAP [OASIS,
2024a] offer an alternative solution by abstracting low-level drivers into standardized
interfaces. Jacdac, for instance, uses services to separate application logic from low-level
drivers, increasing compatibility and significantly lowering the barrier for embedded
programming. However, since electronic components cannot communicate directly with
these high-level protocols, an additional microcontroller is required for each electronic
component to handle the conversion, introducing latency and potential loss of unique
component features that are not captured by the protocol.

In this chapter, we introduce LogicGlue, a novel software stack that allows for writing
platform-independent drivers and, as such, allows for writing hardware-independent
application logic. To realize this, LogicGlue consists of a novel driver specification
(Figure 5.1a) for expressing the behavior of electronic components. The LogicGlue driver
specification defines all functionalities and characteristics of electronic components,
ranging from specific communication protocols to the formatting of data and their units.
As these definitions are specified in bytecode, the LogicGlue driver specifications can
be processed by any microcontroller and any programming language, making them
platform-independent. As such, users are not restricted to a single microcontroller or
platform.

The LogicGlue interpreter (Figure 5.1b) operates on the microcontroller and translates the
instructions from the driver specification into platform-specific commands. Additionally,
the high-level LogicGlue programming library (Figure 5.1c) facilitates interfacing with
electronic components via the interpreter. Unlike high-level communication protocols,
like Jacdac [Devine, 2022], LogicGlue does not require the translation of features of
electronic components to services nor the conversion of communication messages to
a single protocol. Instead, the driver commands of LogicGlue ensure all components’
features remain available, and interfacing is done via the native signals supported by
the electronic components, avoiding additional overhead.

4https://learn.adafruit.com/adafruit-gfx-graphics-library/overview

90

https://learn.adafruit.com/adafruit-gfx-graphics-library/overview

5.1. INTRODUCTION

Application Logic

#include <LogicGlue.h>
#include <logicglue/drivers/mcp9868.h>

// create the MCP9808 component connected to I2C Preamble
pinmap_t pinmap = NO_PINMAP;
component_t component = DEFINE_COMPONENT(mcp9808_bytecode, pinmap);

// create a temperature sensor
sensor_t sensor;

void setup() {
// initialize the component
initialize_component(&component);

// create a new temperature sensor for the component nfiguration
create_temperature_sensor(&component, &sensor, TEMPERATURE_FAHRENHEIT);
}

void loop() {
// read the temperature as a float, in Fahrenheit
float temperature = sensor_read_as_float(&sensor);

/... { Interaction

delay(100);
LogicGlue
LogicGlue LogicGlue
Programming Interpreter
e - A Library interpreter.init(
LogicGlue mcp9808_bytecode, 12C.begin()
Bytecode) BOOT: —
Preamble - Driver —> —_—> [0,28,8,3,2,5,5,..]

for MCP9808

ratic MCP9808

Temperature
Sensor

(" interpreter.run(

sensor_read() GET_DATA 12C.read(0x18)

) GET_DATA:
> > [0,50,0,0,1,16,..] >
Interaction <
Cmmmm——— R L CT

Return reading Return reading in Data converters Return reading in

. in Fahrenheit Fahrenheit Celsius

Figure 5.1: Overview of LogicGlue. (a) The novel driver specification of LogicGlue encodes the behavior
of drivers in bytecode to ensure platform independence and compatibility across various microcontrollers
and programming languages. (b) The LogicGlue interpreter is responsible for processing the bytecode
driver specifications and executing platform-specific commands. (c) The LogicGlue programming library
is designed to facilitate interaction with electronic components through the interpreter.

91

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

LogicGlue empowers developers to write hardware-independent application logic.
Swapping, for example, a temperature sensor working over the I12C protocol, with
one outputting analog voltage readings, does not require rewriting application logic
as LogicGlue automatically handles the required data conversions. Furthermore, our
buildup ensures that microcontrollers or development platforms, that implement the
LogicGlue interpreter and the LogicGlue programming library, are instantly compatible
with all electronic components for which LogicGlue driver specifications are available.
Likewise, electronic components for which a LogicGlue driver specification is available
are compatible with any microcontroller that supports LogicGlue.

In summary, we contribute:

1. A LogicGlue driver specification format, allowing the creation of platform-
independent drivers for electronic components through bytecode commands.

2. An accompanying visual block-based programming interface to facilitate writing
LogicGlue driver specifications in bytecode.

3. A LogicGlue interpreter for executing driver specifications.

4. A simple high-level programming library to interface with electronic components

via the interpreter.

5.2 LogicGlue

LogicGlue consists of several components as shown in Figure 5.1. (a) The LogicGlue
Driver Specification, which enables platform-independent instructions for specifying the
workings and characteristics of electronic components. These driver specifications are
composed in a visual block-based programming interface and are then stored in a byte-
code format. This bytecode encodes an instruction set that is platform-independent and
thus cannot be executed directly by the hardware. (b) The LogicGlue Interpreter processes
and executes the bytecode instruction set on a specific microcontroller platform, such as
Arduino or micro:bit. (c) The LogicGlue Programming Library offers high-level functions
for interacting with the electronic components through the LogicGlue interpreter. This
library offers an interface for interacting with components, allowing developers to
write application logic without focussing on specific hardware considerations, such as
protocols or data formats. This architecture enables swapping electronic components
with minimal to no rewriting of the application logic, as we will demonstrate in the
walkthrough below.

5.2.1 Writing Application Logic

To explain the procedure for writing the application logic, we will provide an example
from the perspective of a DIY enthusiast, Alex, who integrates a temperature sensor into
a prototype with the help of LogicGlue. Considering the wide variety of temperature
sensors available, such as analog, digital, and infrared temperature sensors, Alex
wants to experiment with different models to find the most suitable one for his project.

92

5.2. LOGICGLUE

Traditionally, this would be a lengthy and complex process, as each component might
use a different protocol and require different signal processing methods. In the best-case
scenario, a software library is available for each component, and Alex only needs to
rewrite the application logic three times to work with three libraries. For example, the
library of the MCP9808 digital temperature sensor® embeds features for initializing
and using the I2C protocol, while the library for an analog temperature sensor handles
all analog-to-digital conversions. If no library is available that is compatible with the
development platform used, an additional driver has to be written first based on the
specifications in the datasheet. Figure 5.2 shows the major differences in code for
interacting with the MCP9808 digital temperature sensor over 12C, using the Adafruit
library, and the TMP36 analog temperature sensor using analog readings, on the Arduino
platform. Besides differences in protocols between the sensors, there are also major
differences in output readings, as one temperature sensor outputs temperatures in
Celsius while the other outputs voltages. Additional processing is thus needed.

o TMP36 temperature sensor (analog) o MCP9808 temperature sensor (digital)

#define TMP36pin A@ #include <Wire.h>

#include "Adafruit_MCP9808.h"
void setup() {
} Adafruit_MCP9808 tempsensor = Adafruit_MCP9808();

void loop() { void setup() {

int sensorvalue = analogRead(TMP36pin); if (!tempsensor.begin(ox18)) {
return;
}
float voltage_mv = (((sensorValue * 5.0) / 1023.0) - 0.5) * 1000; }
float temperature_C = voltage_mv / 10.0;
float temperature_F = (temperature_C * 1.8) + 32; void loop() {

float temperature_C = tempsensor.readTempC();

delay(100);
} float temperature_F = (temperature_C * 1.8) + 32;

delay(100);

Figure 5.2: a) The traditional code that is required to interact with the TMP36 analog temperature sensor.
b) The traditional code that is required to interact with the MCP9808 digital temperature sensor.

Using LogicGlue, Alex does not need to write multiple versions of the application
logic to test different temperature sensors. Instead, he can include the respective driver
specification file and test each temperature sensor using the same application logic
code. Figure 5.3-c shows the code to interact with the MCP9808 digital temperature
sensor, working over 12C, and the TMP36 analog temperature sensor, using analog
readings, through LogicGlue. As shown in Figure 5.3a-b, only the preamble changes
when swapping the two very different temperature sensors. These changes include the
driver specification file, the parameter passed in the constructor, and the references to
the microcontroller pins in which the component is plugged. Despite the difference
in output readings (Celsius versus voltages), Alex specifies in both code snippets that
he prefers temperature readings in Fahrenheit (line 20). The LogicGlue interpreter
automatically converts the components’ readings into the format preferred by Alex.

5https://www.arduino.cc/reference/en/libraries/mcp9808/

93

https://www.arduino.cc/reference/en/libraries/mcp9808/

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

e— TMP36 temperature sensor (analog) @—MCPBSBB temperature sensor (digital)

#include <LogicGlue.h> #include <LogicGlue.h>
#include <logicglue/drivers/tmp36.h> #include <logicglue/drivers/mcp9808.h>

pinmap_t pinmap = DEFINE_PINMAP(A®); pinmap_t pinmap = NO_PINMAP;
component_t component = DEFINE_COMPONENT(tmp36_bytecode, pinmap); component_t component = DEFINE_COMPONENT(mcp98@8_bytecode, pinmap);

0o N

sensor_t sensor;
void setup() {
initialize_component(&component);
create_temperature_sensor(&component, &sensor, TEMPERATURE_FAHRENHEIT);
}
void loop() {

float temperature = sensor_read_as_float(&sensor);

delay(100);

& J

Figure 5.3: a) Preamble for including the LogicGlue driver specification for the TMP36 analog temperature
sensor. b) Preamble for including the LogicGlue driver specification for the MCP9808 digital temperature
sensor. ¢) Application logic interacting with either temperature sensor using temperatures in Fahrenheit.

5.2.2 Writing Driver Specifications

LogicGlue driver specifications include all functionalities for driving an electronic
component. To streamline writing driver specifications, we developed a block-based
specification interface based on Blockly®. As shown in Figure 5.4, users compose
commands by selecting command blocks representing various functionalities. When
the specifications are complete, the interface stores this graphical representation of
the driver specifications as a bytecode sequence in a header file. This file is then
included in the application logic as demonstrated in Section 5.2.1. To correctly compose
driver specifications, a good understanding of the components” datasheet is required.
However, this is a one-time effort, best done by component manufacturers or experienced
engineers, and then shared with all customers or users.

The following example illustrates composing the driver specifications for the MCP9808
temperature sensor’. In the init procedure, we initialize the component’s communication
protocol, which, in this case, is the I2C protocol. As shown in Figure 5.5, we insert a
configure block (line 1), select I2C as the protocol, and set the frequency to 400kHz as
specified in the sensor’s datasheet. The datasheet further details that this component is
available via address 0x18 on the I2C bus, and uses 16-bit registers (line 2). A common
practice for I2C devices then involves verifying the component’s presence by reading out
the manufacturer ID register (0x06) and comparing it to the ID detailed in the datasheet
(0x54) using an assert (line 3). The last block in the start procedure involves setting
the sensor’s default configuration, using a write command, to ensure the sensor uses

its default settings at startup. As shown in line 4, we set the data of the configuration

6 https://developers.google.com/blockly
7 Datasheet: https://wwl.microchip.com/downloads/en/DeviceDoc/25095A.pdf

94

https://developers.google.com/blockly
https://ww1.microchip.com/downloads/en/DeviceDoc/25095A.pdf

5.2. LOGICGLUE

I Definitions
I Instructions (platform)
D Numerics SET id (D value ‘

Lists
I Define function

instructions:

Define property

LIST CREATE 10 id (CIED type (KD items ‘

LIST CREATE 20 id (I type (KD itens x ‘ fes ‘

LIST SET 1D id (G index ' value '

LIST SET 2D id (D index x ‘ index y ‘ value '

LIST FILL id ([CIED value ‘
PRINT value '

Figure 5.4: LogicGlue’s graphical interface for creating drivers using the driver specification.

register (0x01) to its default value (0) as specified in the sensor’s datasheet.

The next step involves defining the features supported by the MCP9808 temperature
sensor, such as temperature readings, resolution updates, and sleep and wake-up
functionalities. Each functionality is created using a functionality block. For specifying
the temperature reading functionality, we select GetData as the function category. This
field defines that this is the primary functionality of the component, compared to, for
example, the resolution feature. Within the definitions of this block, we specify the return
parameter type and instructions for reading the temperature. The return type is set
using a output block (line 5), which characterizes the return type. As specified in the
datasheet, the MCP9808 temperature sensor returns temperature readings in Celsius.
Alternatively, this block can support other function categories, such as setting data,
triggering specific features like sending the pixel buffer to a display, or reading internal
parameters like the internal temperature of an electronic component.

To read the temperature (line 6), we follow the instructions specified in the sensor’s
datasheet. Using a read block, we first read the temperature register (0x5) from the
MCP9808 temperature sensor and store the data in a temporary variable. As the data is
in two’s complement format, we follow the calculations in the datasheet to convert the
bits to a decimal temperature. First, we split the 16-bit value into an upper (line 7) and
lower (line 8) byte and clear the flag bits in the upper byte. As the positive and negative
temperature data are computed differently, we use an if block (lines 9-12) to check if the
sign bit (0x10) that indicates a negative value is set (line 9). If this bit is set, the if-test
evaluates to true, and lines 10-11 are executed. Line 10 resets the sign bit, while line 11

95

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

Boot function

12C CONFIG address [(D frequency
SET (NP id (D value | 12C READ ([TFT3ED from register \J‘m m‘

assert 0 EVALUATE to [ceT (ETNED id 6D | €0 () 21 | vith coce 0/(D B

I2C WRITE valuel ;m value2 [(G

- definitions:
5) output [CIRM has format (RN TIOMLST R with scale [T
-

6) SET id (G value | I2C READ [FI3R) from register \“

Tl | s (T 1 €D verve O wamh) v (' cer (T 10 OB | €30 (B O ‘mc‘mm
8) SET ([(ZZYNED id €MD value | MATH [GETidm‘m\'"’m mﬂ]

9) 1F Y MATH [GET [KITYNE) id ‘m\,‘m ‘

10) SET (TTNED id EWED value © MATH [GET [XYNED id 9D m[:m

T
~ (~ N pp— J PN ——— | ~
SET ouT id (CHED value | maTH [(T3 EZ3 " mah) maTH (. ceT (CETHED id 30 D (D €R v () oe7 (EETHED <« €1 2D (0TI €O ‘

11)

12)

Figure 5.5: LogicGlue driver specification for the MCP9808 temperature sensor.

executes the mathematical operations specified in the datasheet to calculate a negative
temperature in Celsius and stores the result in the output variable. If the bit indicating
a negative value is not set, line 12 is executed, which calculates and stores a positive

temperature in Celsius.

Once all functionalities are created, the LogicGlue interface automatically stores this
driver specification as a bytecode sequence in a header file.

5.3 Related Work

This section discusses the contributions that have influenced the development of
LogicGlue, focusing on advancements in software abstraction, standardized communi-
cation interfaces, and intermediate representation layers. Detailed descriptions of all
instructions and their semantics are provided in Appendix B.1.

5.3.1 Software Abstraction

Over the years, embedded systems have been significantly shaped by the advent
of software platforms and frameworks aimed at abstracting hardware complexities.
Notable platforms such as PlatformlIO [PlatformIO, 2024], Mbed OS [Mbed, 2024],
and Zephyr [Zephyr, 2024b] have been instrumental in offering operating system-like
functionalities to microcontrollers. These platforms mask the intricacies of hardware,
allowing developers to concentrate on application logic. The role of Arduino [Arduino,
2022] in democratizing electronics through an easy-to-use hardware and software
platform has further made embedded programming accessible to a broad audience.

96

5.3. RELATED WORK

The evolution has also been marked by the emergence of Real-Time Operating Systems
(RTOS) like FreeRTOS [FreeRTOS, 2024], which provide concise, scalable, and flexible
software management for embedded devices. Similarly, TinyOS [Levis, 2005] has played
a pivotal role in promoting the development of networked sensor systems, highlighting
the importance of specialized platforms in the advancement of Internet of Things (IoT)
and embedded applications. Adding to this, ROS [ROS, 2024] offers a comprehensive
set of software libraries and tools that assist users in building robot applications.

Challenges persist in integrating external hardware components despite these ad-
vancements. Zephyr’s implementation of Device Drivers [Zephyr, 2024a] illustrates a
framework for hardware management, yet adapting these drivers for new components
underscores the necessity for a deep understanding of hardware-software interaction.
While Zephyr’s Device Drivers share a concept similar to the LogicGlue driver specifica-
tion, LogicGlue focuses on interacting with external hardware, while Zephyr is designed
to offer a standardized approach for setting up hardware peripherals. Furthermore,
LogicGlue offers a convenient block-based interface for creating the drivers.

In parallel, frameworks like Codal [Devine, 2018] and Arduino [Arduino, 2022] have sig-
nificantly eased microcontroller programming, streamlining direct hardware interaction.
However, they often fall short in addressing the complexities of integrating external
components, a task that still poses considerable challenges. Libraries such as the Adafruit
GFX Graphics library [Burgess, 2024] aim to bridge this gap by abstracting hardware
communication, yet these libraries often cannot leverage each component’s unique
features, and integrating them in the application logic requires a good understanding of
the functionalities offered by the library.

Integrated Development Environments (IDEs) have made significant inroads in ad-
dressing these challenges. The Arduino IDE [Arduino, 2024b], DeviceScript [Microsoft,
2024a], and Microsoft MakeCode [MakeCode, 2024] integrate tools that facilitate the
discovery, selection, and integration of software libraries, enhancing the efficiency of
the development workflow. These IDEs, alongside advanced environments like Visual
Studio Code [Microsoft, 2024b] with its rich features for embedded development, play a
pivotal role in lowering the entry barriers to embedded programming.

In general, while existing software platforms and frameworks have significantly sim-
plified hardware interaction, they often come with a standardized abstraction layer
that doesn’t account for the unique functionalities of individual components or the
varied needs of developers. LogicGlue introduces a novel approach by offering platform-
independent driver specification alongside a versatile programming library, ensuring
developers can write hardware-independent application logic. This eliminates the
limitations posed by the tight coupling of drivers and libraries in conventional systems,
allowing for seamless hardware changes without extensive code adjustments.

97

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

5.3.2 Standardized Communication Interfaces

The concept of integrated modular systems has seen substantial development, with
ecosystems like Jacdac [Devine, 2022], Modular-Things [Read, 2023], and .NET Gad-
geteer [Hodges, 2013] leading the way in standardized communication interfaces. These
systems offer a range of compatible components that communicate through standardized
protocols, enabling easy system assembly and expansion. The Raspberry Pi platform [Pi,
2022b], with its extensive ecosystem of hardware add-ons and Hardware Attached on
Top (HATs), exemplifies the power of modular design in promoting system scalability
and interoperability.

SoftMod [Lambrichts, 2020], a concept that emphasizes configuring component behavior
through their physical arrangement, represents a novel approach in this domain. This
strategy facilitates a tangible and intuitive method for modifying system functionali-
ties, showcasing the potential for physical configuration to impact software behavior
directly. Further contributions to this field include the Intel Edison [Edison, 2024]
and PMod [Pmod, 2021] platforms, which were designed to foster innovation in IoT
and embedded projects through modular components and standardized interfaces.
Similarly, the BeagleBone [BeagleBone, 2021] series offers an open-source platform that
encourages experimentation and development with its cape plug-in boards, underlining
the versatility of modular design in embedded systems.

Interoperability in embedded systems necessitates interacting over diverse communi-
cation protocols like SPI, I2C, and UART. While these protocols are frequently used to
interact with electronic components, using them requires significant knowledge in em-
bedded development [Lambrichts, 2021]. High-level protocols such as Jacdac [Devine,
2022] provide a simplified method for device communication, wrapping low-level
communication protocols like I2C and SPI into a high-level communication standard. In
practice, they introduce an ecosystem of modules that all share the same communication
interface to streamline system assembly. In addition, high-level protocols tailored for
IoT applications, like MQTT [OASIS, 2024b] and CoAP [OASIS, 2024a], have become
prominent, offering lightweight solutions for resource-constrained environments. These
protocols exemplify advancements in ensuring devices from various manufacturers
can communicate seamlessly, fostering a more cohesive ecosystem. Here, frameworks
like TinyOS [Levis, 2005] and Static TypeScript [Ball, 2019] have made contributions
by focusing on networked systems and providing platforms for building complex,
interconnected devices. However, compared to low-level communication protocols like
SPI and 12C, these approaches often introduce additional translation steps to make
electronic components compatible with the communication interface. In particular,
each feature of an electronic component needs to be able to be exposed through the
standardized interface, potentially leading to the loss of unique features and latency

issues.

LogicGlue stands out by allowing for direct interaction with hardware components

98

5.3. RELATED WORK

through their native protocols without resorting to standardized interfaces. This direct
approach ensures that the unique features of each component are preserved, offering
developers a more efficient and feature-rich integration experience. Furthermore,
the platform-independent nature of LogicGlue driver specifications ensures that any
microcontroller or development platform implementing the LogicGlue interpreter
and programming library becomes instantly compatible with all supported electronic
components. Developers can switch between components with different communication
protocols or functionalities without rewriting application logic, significantly reducing
the complexity and improving the adaptability of embedded systems development.
This approach not only streamlines development but also enhances the potential for
creative hardware solutions by simplifying the integration of diverse components.

5.3.3 Intermediate Representation Layers

The adoption of high-level programming languages and abstraction layers has signifi-
cantly transformed software development practices. Platforms like Node-RED [Node-
RED, 2024], which provides a visual programming environment for IoI applications,
illustrate the effectiveness of abstracting complex code into more accessible formats.
Similarly, the introduction of TypeScript [Ball, 2019] has offered developers a powerful
tool for building large-scale applications by providing types and high-level syntax that
compile down to JavaScript, suitable for web and server environments.

Intermediate Representation Layers (IRLs) are key in bridging high-level programming
constructs with the lower-level code required by microcontrollers and embedded devices.
For instance, LLVM [LLVM, 2024] provides a wide range of tools and libraries that
support converting high-level language code into machine code, facilitating cross-
platform application development. This concept is crucial in understanding how
abstract code structures can be effectively translated into executable commands that run
on hardware devices.

Traditional software development practices for embedded systems often rely on con-
verting the full application logic into an IRL, focusing primarily on programming the
microcontrollers themselves. This approach is instrumental in bridging the gap be-
tween high-level programming constructs and the lower-level executable code required
by microcontrollers, as seen in platforms leveraging LLVM [LLVM, 2024] or similar
technologies. The primary objective here is to streamline the development process
for the microcontroller’s software, ensuring that high-level abstractions are effectively

translated into machine-level commands that the hardware can execute.

LogicGlue, while embracing a conceptually similar use of IRLs, diverges in its application
and objectives. Rather than focusing on the microcontroller’s entire application logic,
LogicGlue facilitates the interactions with hardware components. Its driver specification
outlines the commands for interfacing with hardware components. This specificity
ensures that developers can engage with the unique functionalities of each component

99

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

directly, without the intermediary step of translating general-purpose application logic

into hardware-specific commands.

5.4 LogicGlue Driver Specification

The LogicGlue driver specification provides a comprehensive framework to characterize
all functionalities of an electronic component. These functionalities range from initializa-
tion procedures to read and write actions, as well as fine-tuning the component’s settings.
The LogicGlue driver specification is based on the Reduced Instruction Set Computing
(RISC) architecture and is Turing complete, indicating its capability to execute any
computable function given sufficient resources. LogicGlue supports comprehensive
data management, conditional operations, and program flow control.

Each instruction in the LogicGlue driver specification is represented by a predefined
numeric code, organized within an enumeration (enum). Using an enum allows
each instruction to be given a descriptive name, which enhances code readability and
maintainability. While the driver specification itself is physically stored as a traditional
array of bytes, this section presents all instructions using their enum names, along with
indentation and color coding, to improve clarity and comprehension. Additionally,
we have included a side-by-side visualization of the block-based representation in the
LogicGlue interface to further aid understanding.

5.4.1 Function Definitions

The LogicGlue driver specification comprises several functions that represent the
available features of an electronic component. This section explains how these functions
are defined within the LogicGlue driver specification, using the driver for the HC-SR04
ultrasonic distance sensor as an example (Figure 5.6).

The specification begins with the bytecode definition (Figure 5.6a), specifying the
required microcontroller resources for the environment in which the driver will run,
including communication protocols and memory allocation requirements. These details
ensure that the electronic component is compatible with the intended microcontroller
or platform, which is crucial for correct operation within a given hardware setup. For
example, if a sensor requires an I2C communication protocol and specific GPIO pins,
these requirements are explicitly stated to prevent issues related to incompatibility.
When using the LogicGlue visual interface, the bytecode definition is automatically
determined and added when storing the driver specification header file.

Following the bytecode definition, the boot function (Figure 5.6b) provides instructions
necessary for configuring both the microcontroller and the electronic component. This
includes configuring communication protocols, initializing GPIO pins, and setting
configuration registers. For instance, configuring an I2C temperature sensor would
involve setting the I2C address and preparing the necessary registers to read temperature

100

5.4. LOGICGLUE DRIVER SPECIFICATION

LogicGlue Visual Block-based Interface

Boot function

GPIO CONFIG pin (i GET [LNZCIRS id (G| mode
GPIO CONFIG pin (i GET [IZCIRS id EWED| mode CIIETIE
-

Define function (ENTID
- definitions:

@tputmhn i1 [length] Meter - LSt centi -)

s 5000 e i e i i o G0 D 3D 6] e | G200 €50
.

LogicGlue Driver Specification

// custom defines

define

define

// HC-SR@4 Ultrasonic distance sensor driver

const uint8_t []
// bytecode definition

// boot section

,"// function for reading the distance in centimeters

// send trigger pulse

G < // read echo pulse and calculate distance

\

Figure 5.6: Driver specification for the HC-SR04 ultrasonic distance sensor. a) shows the bytecode
definition, b) the boot function, and c) contains all function definitions.

data. These steps ensure the electronic component is correctly initialized and ready for
operation. The boot section is automatically executed.

The next section of the LogicGlue driver specification defines the functions of the
component (Figure 5.6c). Each function is described by its name and the format of its
input and output parameters, followed by a series of instructions that detail the steps
required to perform the function. The function name indicates the type of functionality,
such as light sensing, temperature reading, or display output. Parameters are characterized
by the format name and a scale, which allows for adjusting the data value according to
predefined standards such as metric scales. These details are crucial for LogicGlue’s
automated data conversion (section 5.5.2) and, ultimately, allow for swapping between
electronic components without rewriting application logic. For instance, if Fahrenheit

101

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

is used in the application logic, LogicGlue offers readings in this unit regardless of
whether the temperature sensor returns readings as Fahrenheit, Celsius, or Kelvin.

Like function calls in programming, LogicGlue supports multiple alternative imple-
mentations of similar functionalities that are differentiated by their input or output
parameters. This is useful when, for example, defining driver instructions for the
MPU-6050 accelerometer® which has built-in support to output quaternions and Euler
angles. To determine the best driver function, LogicGlue prioritizes functions based on
the number of required data converters to match the data format used in the application
logic.

In addition to functions, the driver specification also details the properties of the
electronic component, such as display size, gain, and sensor integration time. Properties
are managed similarly to functions but do not require data format conversions for input
and output values. Instead, properties are defined by a name and the range of values
they accept, which can be a predefined set (e.g., sensor gain) or numeric values (e.g.,
display size). LogicGlue automatically verifies the compatibility of a given value with a
property. For example, when setting the gain of a sensor, LogicGlue supports various
generic gain settings of 1x, 2x, 4x, 8x, and so on. However, the TCS34725 color sensor®
specifically only supports gain settings of 1x, 4x, 16x, or 64x. By defining the property
with a set of accepted values, as illustrated in Figure 5.7, LogicGlue ensures that only
compatible gain settings are accepted, maintaining consistent behavior when swapping
between different electronic components and showing an error in case incompatible
values are used.

Lastly, properties can be defined as static when they return a constant value, providing
a straightforward way to access static information about the component. For example,
Figure 5.8 shows the definition of the static properties for getting the display size of the
SSD1306 OLED display, which will never change and thus can be defined as static.

5.4.2 Numeric Instructions

LogicGlue features a versatile subsystem for handling numeric instructions. A numeric
instruction is an instruction that evaluates to a numeric value, such as an integer or
floating-point number. These instructions can represent constant values, the results
of mathematical operations like addition and subtraction, or values received from
hardware peripherals like GPIO pins or communication protocols. For each numeric
instruction, LogicGlue keeps track of its data type and supports unsigned integers
(U8, U16, U32), signed integers (I8, 116, 132), and numbers in both floating (FLT) and
fixed (FIX) point formats. Detailed descriptions of all numeric values and their specific

semantics are included in Appendix B.2.

8 https://invensense. tdk.com/products/motion-tracking/6-axis/mpu-6050/
9 https://ams-osram.com/products/sensors/ambient-1light-color-spectral-proximity-sensors

/ams-tcs34725-color-sensor

102

https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://ams-osram.com/products/sensors/ambient-light-color-spectral-proximity-sensors/ams-tcs34725-color-sensor
https://ams-osram.com/products/sensors/ambient-light-color-spectral-proximity-sensors/ams-tcs34725-color-sensor

5.4. LOGICGLUE DRIVER SPECIFICATION

LogicGlue Visual Block-based Interface

+ -
Define property and accept [(EETIETED [Gamn 6ax_]
C+ =
SWITCH value PROPERTY
- case GAIN 1X - 0)(00

12¢ WRITE value1 () (E0D valuez | - case L’, GAIN 4x - [L - uB - |

- case Q‘
= case TR " us - | oxe3
- default [(T3 230

LogicGlue Driver Specification

// property for setting the gain of the TCS34725 color sensor

Figure 5.7: Defining a property for setting the gain of the TCS34725 color sensor.

LogicGlue Visual Block-based Interface

Define static property ([ESTECILS O (NS

Define static property [(TSTErLid 64 |

LogicGlue Driver Specification

// property for getting the width of the SSD1306 display

// property for getting the height of the SSD1306 display

Figure 5.8: Defining static properties for getting the size of the SSD1306 OLED display.

A key feature of the numeric subsystem is its ability to use numeric instructions as
inputs for other numeric instructions, enabling the nesting of operations. This allows for
the creation of complex numerical expressions and operations. For example, Figure 5.9
illustrates various numeric operations: a) the sum of two integers, b) multiple nested

mathematical operations, c) the state of a GPIO pin, and d) an inline if-test.

It is important to note that since the LogicGlue driver specification is stored as an array
of unsigned bytes, signed numbers must be cast, and large integers or floating-point
numbers must be split across multiple bytes. LogicGlue provides convenient macros to

automatically handle these conversions.

103

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

LogicGlue Visual Block-based Interface

e PRINT value u16 1600 + us 2 I

‘D PRINT value us 2= VAR) + us 3 I

0 PRINT value us 13

@ PRINT value VAR o > us 2 18 -1 VAR 1 + us 1 I

LogicGlue Driver Specification

// print(1000 + 2)

(@ // print2 * (VAR + 3))

// print(gpio_read(13))

// print((VAR_® > 2)? -1 : (VAR_1 + 1))

Figure 5.9: Illustration of the numeric subsystem within the LogicGlue driver specification, demonstrating
various numeric operations.

5.4.3 List Instructions

List instructions in LogicGlue function similarly to numeric instructions, providing a
flexible way to handle arrays of data. Like numeric instructions, LogicGlue maintains
the data type of each list to ensure type consistency. Lists are commonly used as data
buffers in drivers for displays or as a convenient method for sending multiple bytes
over a communication protocol. For example, Figure 5.10 shows an example of the
instructions for sending the pixel buffer to the SSD1306 OLED display using a list for
the data commands (line 2) and a list for the pixel buffer (line 4). Detailed descriptions
of all list items and their specific semantics are included in Appendix B.3.

LogicGlue supports various list types, including integer lists, floating-point lists, and
binary arrays. Binary arrays are a special type of array where 8 bits are grouped and
stored as a regular byte but can be individually addressed. LogicGlue supports two
variants of binary arrays: one where the 8 bits in the x-direction are combined into one
byte, and another where the 8 bits in the y-direction are combined. Binary arrays are
typically used for single-color displays like the SSD1306 and dot-matrix displays, where
each pixel can either be on or off.

104

5.4. LOGICGLUE DRIVER SPECIFICATION

LogicGlue Visual Block-based Interface

A GP1O WRITE pin [GET [(ENECES id

CREATE LIST type (TEHED) [0] 0 0!

AN sP1 wRITE LIST

3) el
4) SPI WRITE LIST [GET ([(ESHED id CED

LogicGlue Driver Specification

// enable command mode, prepare data transfer

1)

2)
// set column address
// start at @
// end at 127
// set page address
// start at @
// end at 7

// enable data mode, transfer data
3)
a)

Figure 5.10: Illustration of the list subsystem within the LogicGlue driver specification, demonstrating
the instructions for sending the pixel buffer to the SSD1306 OLED display.

When developing a LogicGlue driver for displays like the SSD1306 OLED, it is necessary
to define functions that set the color of pixels based on specified x and y coordinates.
Typically, this involves updating the pixel color by writing a new value to the internal
pixel buffer. While straightforward, this method becomes inefficient when updating a
large number of pixels in a loop because each iteration requires evaluating the input
values and executing update instructions, leading to significant computational overhead.

To address this inefficiency, LogicGlue introduces specialized function types that execute

predefined actions more effectively. For example, the OP_DEFINE_FUNCTION_TYPE in-
struction allows developers to define optimized driver functions, suchas SET_LIST_LOOP,
which streamlines the process of updating multiple values in a list. This function

type enables developers to specify a range of indices to be updated at once and to

provide either a static value or a callback function that determines the new value for

each pixel. By employing an optimized loop within the LogicGlue interpreter, the

SET_LIST_LOOP function significantly reduces the computational load by minimizing

the repetitive evaluation of values. This efficient approach ensures rapid updates while

maintaining the capability to automatically convert values as necessary, enhancing

the overall performance and responsiveness of the display updates. As demonstrated

in Section 5.7, updating the values for the SSD1306 OLED display is as efficient as

traditional approaches.

105

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

5.4.4 Branching Instructions

LogicGlue offers a range of instructions that facilitate complex control flows, similar to
traditional programming languages. For instance, the IF, IF_ELSE, and IF_ELIF_ELSE
instructions allow for conditional branching, akin to their counterparts in conventional
programming. The LOOP instruction requires start, end, and increment values, executing
the subsequent instruction multiple times based on these parameters. Additionally, the
FOREACH and FOREACH_BYTE instructions iterate over the items in a list, using each
list item or byte, respectively. While FOREACH returns a single item, FOREACH_BYTE
is particularly useful for binary arrays or lists storing 16- or 32-bit values, as it returns
each byte separately, regardless of the list type. For example, in Figure 5.11, the driver
for the dot-matrix display uses a binary array as a pixel buffer and requires the row
address to be sent before each data byte. Using the FOREACH_BYTE instruction, this
operation becomes more efficient as it allows the driver to iterate through each byte
of the binary array, sending the row address and the corresponding data byte in a

streamlined manner.

LogicGlue Visual Block-based Interface

FOREACH BYTE in list | GeT (ESHED id D

SPI WRITE valuel us 1 value2 _

LogicGlue Driver Specification

Figure 5.11: Example of the FOREACH_BYTE instruction.

LogicGlue supports various methods for branching the program flow. Labels act
as designated jump points within the LogicGlue driver specification, with the CALL
instruction leveraging these labels to dynamically direct the program counter. The
CALL instruction functions similarly to traditional programming functions, supporting
arguments and creating a separate environment for the function that is called. The
RETURN instruction reverts the flow of execution back to its original position before

the jump, effectively managing the program’s execution stack.

In addition to control flow, LogicGlue driver specification supports various types of
data storage and manipulation, distinguishing between global and local variable scopes.
Global variables are persistent and accessible throughout the entire driver specification,
while local variables are temporary and only exist within specific functions, managed
via a stack mechanism. This stack-based approach allows for the dynamic allocation
and deallocation of local variables as functions are called and returned.

When functions are invoked, arguments are passed by reference, linking them to global
variables. This method allows functions to alter different variables by updating the
references passed as arguments, enabling reusable functions to operate on varying data

106

5.4. LOGICGLUE DRIVER SPECIFICATION

without redundancy. Figure 5.12 illustrates the different scopes of variables within the

LogicGlue driver specification.

LogicGlue Visual Block-based Interface

st id (O value 0D
SET id (D value 0 (CND 69
SET id D valve 0 (D €D

+ -

CALL label CIED (VAR D)

PRINT value [GET [<YHED id CD
PRINT value [GET (ZT3ED id CIED
PRINT value 0 GET (753D id

+ -

CALL label CIED (vAR EED)

PRINT value [GET [ITYHED id D
PRINT value ceT (53D id O
PRINT value [GET (L3RS id

LABEL label I

—
SET (TYNED id G valve O (D a‘
g — .|

ser (IR 1o O va1ue | WAk G (IR 14 OO 6D ce1 (280D i £

RETURN

LogicGlue Driver Specification

// Create local variable TMP_@, and global variables VAR_© and VAR_1
()s ()
. 1,

// Call function with 1 parameter, where parameter #0 = VAR_©

()» // print(100) --> local context, variable unchanged
// print(2) --> VAR_O is updated by the function
// print(1e) --> VAR_1 is unchanged

// Call function with 1 parameter, where parameter #0 = VAR_1

(), // print(100) --> local context, variable unchanged
// print(2) --> VAR_@ is unchanged
// print(20) --> VAR_1 is updated by the function
//================== Functions ==================//

// CFeate local variable TMP_O, only accessible in this function

// Multiply parameter #@ by local variable TMP_O

‘o

Figure 5.12: Example of the LogicGlue driver specification, demonstrating the scope of variables.

5.4.5 Advanced Instructions

In addition to using labels as jump points for function calls, labels can also be utilized
with the GOTO instruction, which moves the program counter while maintaining the
current context. Beyond the basic GOTO instruction, LogicGlue driver specification
includes conditional instructions such as GOTO_IF and GOTO_IF_NOT, which perform
jumps only when specified conditions are met. These instructions enable the creation

107

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

of more advanced behaviors, such as complex looping mechanisms. Figure 5.13 and
Figure 5.14 demonstrate how an if-elif-else test and a for-loop, respectively, can be
constructed using a series of labels and GOTO instructions.

LogicGlue Visual Block-based Interface

J —_——— —_—
GOTO IF NOT label CHED value “| EVALUATE to [cET (7R id CI3 €. (I3 O
2

NOP (no operation)
GoTo label ENED
LABEL label (CIED

GOTO IF NOT label value 1 EVALUATE to [GET (753D id O &3 (D)
NOP (no operation)

GoTO label ENED
LABEL label EWED

6OTO IF NOT label EED value U EVALUATE to \f; 3 VAR - | idm‘[:m]

NOP (no operation)

GoTo label ENED

LABEL label ENED

NOP (no operation)

LABEL label ENED

LogicGlue Driver Specification

// Example of an if-elif-else test that checks if VAR_ is less than 5, 10 or 15.
s s (), U8(5),

// instructions when VAR_@ is less than 5

> >

s s (), Us(1e),

// instructions when VAR_@ is less than 10

>)

E) ()) ())

// instructions when VAR_@ is less than 15

B)

s s
// instructions for other conditions)

il >

Figure 5.13: Example of advanced instructions of the LogicGlue driver specification, demonstrating how
an if-elif-else test can be created using GOTO instructions and labels.

LogicGlue Visual Block-based Interface

——
seT (D id @D velve O O

LABEL label CIED

GOTO IF NOT label ENED value U\ EVALUATE to (, ceT (75D id OB ‘:m m‘

NOP (no operation)

J
se (EID 54 G vove e [(30 0 00,030)|

GoTO label CIED
LABEL label ENED

LogicGlue Driver Specification

// Example of a for-loop, looping from © to 20 with increments of 2
(), U8(e),

> >

s 5 (), Us(20),

// instructions inside loop, with VAR_© the current index
() s (), U8(2),

F))

Figure 5.14: Example of advanced instructions of the LogicGlue driver specification, demonstrating how
a for-loop can be created using GOTO instructions and labels.

108

5.5. LOGICGLUE INTERPRETER

5.5 LogicGlue Interpreter

The LogicGlue interpreter runs on the user’s microcontroller and translates the in-
structions in the driver specification into platform-specific commands. The LogicGlue
high-level programming library complements the interpreter and offers an interface for
developers to interact with electronic components via the interpreter. Unlike high-level
communication standards like Jacdac [Devine, 2022], LogicGlue maintains the native
signals and features of the components, avoiding the need for translation to a common

protocol and the associated overhead.

5.5.1 LogicGlue High-Level Programming Library

The LogicGlue high-level programming library simplifies interaction with various
electronic components by providing functions that serve as wrappers around interpreter
calls. These functions handle the initialization, configuration, and operation of compo-
nents, offering default values for parameters to streamline the process. For instance,
Figure 5.15 illustrates a traditional example of how the driver specification is used in
a typical application that changes the color of an RGB LED based on the measured
distance from an ultrasonic distance sensor. This example highlights the standard
use of LogicGlue for most components, demonstrating its effectiveness in managing

component interactions efficiently.

#include <LogicGlue.h>
#include <logicglue/drivers/hc-sr@4.h>
#include <logicglue/drivers/ky-016.h>

pinmap_t dist_pinmap = DEFINE_PINMAP(D8, D9);
component_t dist_component = DEFINE_COMPONENT(sr@4_bytecode, dist_pinmap);

pinmap_t led_pinmap = DEFINE_PINMAP(D4, D5, D6);
component_t led_component = DEFINE_COMPONENT(ky@16_bytecode, led_pinmap);

sensor_t dist_sensor;
actuator_t led_actuator;
void setup() {
initialize_component(&dist_component);
initialize_component(&led_component);
create_distance_sensor(&dist_component, &dist_sensor, LENGTH_METRIC, SCALE_CENTI);

create_led_actuator(&led_component, &led_actuator, COLOR_HSL);
}

void loop() {
float distance = sensor_sample_average(&distance_sensor, 5);
distance = min(1.0f, max(@, (distance - 10.0f)) / 100.0f);
uint16_t hue = round(distance * 240.0f);

actuator_write_color_hsl(&led_actuator, hue, 100, 20);

delay(100);
}

Figure 5.15: Example of the application logic for interacting with an ultrasonic distance sensor and RGB
LED.

109

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

Initializing components with LogicGlue involves loading the bytecode driver and setting
configuration parameters, such as which GPIO pins are connected. This process creates
a special environment for the driver to run, managing all the necessary resources,
variables, and data buffers for the drivers to work properly. This environment also
keeps track of variable states and configurations, ensuring that components operate
consistently. This is particularly useful for complex tasks that require multiple steps
and need to keep intermediate results. Additionally, the environment can buffer sensor
readings, which is helpful for sensors with limited sampling rates, like DHT temperature
sensors. In Figure 5.15, lines 19 and 20 show how the distance sensor and LED are

initialized.

After initializing the component, LogicGlue provides specific functions to interact with
different types of components. The create_sensor function sets up sensors so that data
can be read in the right format. The create_actuator function sets up actuators, allowing
data to be sent to them correctly. For displays or other buffer-based components, special
functions are available to fill pixel buffers with data. These functions make it easier
to work with components by simplifying complex interactions and providing default
settings.

In Figure 5.15, lines 23 and 25 demonstrate how to create a distance sensor that measures
in centimeters and an LED actuator that accepts colors in HSL format. Using LogicGlue’s
high-level functions, interacting with these components becomes straightforward. For
example, line 30 shows how the distance sensor is sampled five times to get an average
reading. Line 35 shows how the LED color is set based on the calculated HSL hue value

from the distance measurement.

Figure 5.16 illustrates an example of application logic for interacting with the SSD1306
display using the optimized LogicGlue functions to write a set of colors to the internal
display buffers. In this example, a callback function determines the color of the pixels in
the top-left rectangle of the display, while a constant color is applied to the bottom-right.
It is imporant to note that this exact same code can also be used for other types of displays,
such as a dot-matrix display, with no modifications needed beyond the preamble (lines
1-6), as demonstrated in Figure 5.3. This underscores the flexibility of LogicGlue in
managing various components with minimal to no changes to the application logic.

5.5.2 Converting Data Formats

When using traditional software libraries and drivers to interact with electronic compo-
nents, developers need to adhere to the data formats outlined by the components. In
comparison, LogicGlue allows developers to select their preferred data format for each
component in the application logic, independent of the characteristics of the electronic
component. For example, in the walkthrough detailed in Section 5.2, temperature
readings are specified in Fahrenheit (Figure 5.3, line 15), while the MCP9808 and TMP36
temperature sensors provide readings in Celsius and relative voltages, respectively.

110

5.5. LOGICGLUE INTERPRETER

#include <LogicGlue.h>
#include <logicglue/drivers/ssd1386.h>

pinmap_t pinmap = DEFINE_PINMAP(11, 12, 13);
component_t component = DEFINE_COMPONENT(ssd13@6_bytecode, pinmap);

display_t display_buffer;
display_t display;

void calculate_color(uintl6_t x, uintl6_t y) {

dispIay_buFFer_set_color_binary(&display_bﬁf%er;.x % 2);
}

void setup() {

initialize component{&component);

create_display buffer(&component, &displa?ﬁbuffer, COLOR;EINARY);
create_display(&component, &display);

uint8_t width = display get width{(&component);
uint8_t height = display_get_height (&component);

display buffer_clear(&display buffer);
display buffer fill rectangle_dynamic(& isplay buffer, @, @, width/2, height/2, calculate_color);

display buffer_set color_binary(&isplay buffer, 1);

display_buffer_fill_rectangle(&display_buffer, width/2, Height/?, width/2, height/2);

isploy_update (idisplay)
Figure 5.16: Example of the application logic for interacting with the SSD1306 OLED display.

To facilitate seamless data conversions, the LogicGlue interpreter automatically applies
a series of built-in data converter functions. These functions, all written in bytecode,
convert between the data format provided by the application logic and the data format
specified in the driver specification. Rather than adopting the impractical approach of
including a separate converter function for every possible data format—which would be
infeasible given the memory constraints on prototyping platforms—LogicGlue leverages
two complementary approaches to reduce the number of required data converters:

1. Converting Scalable Formats:
Scalable data formats use metric prefixes like centi-, milli-, and kilo- to adjust
measurement units. Instead of separate converters for each unit pair, LogicGlue
uses a generic scale converter that calculates the conversion factor based on these
prefixes. This factor is derived from the difference in metric scale steps, each
representing a power of 10. For example, converting from milli- to deci- involves
moving two steps to the right on the scale, resulting in a conversion factor of
102 = 100. For imperial measurements, LogicGlue uses predefined ratios relative
to a base unit (foot). The conversion factor is found by dividing the "from’ ratio by
the "to’ ratio. For example, converting inches to miles uses the ratios 5 and 5280,
respectively, giving a factor of % /5280 = 0.00001578. When converting between

111

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

metric and imperial formats, LogicGlue first converts to the base units before
applying the appropriate conversion.
2. Converter Chaining;:

LogicGlue automatically chains a set of converters in case no single converter
is available. For example, if there are converters available for HSL colors to
RGB colors and RGB colors to CMYK colors, LogicGlue automatically chains
these to convert HSL colors to CMYK colors. Finding a compatible converter
chain is managed by representing all data formats as a graph, where each node
represents a specific data format, and each edge represents a converter that can
transform data from one format to another. To find the most efficient conversion
path between two data formats, LogicGlue employs a breadth-first search (BFS)
algorithm. Figure 5.17 shows an example of a graph of data formats and available

//
o4 N -

converters.

Q = Data format

—> = Converter is implemented

Figure 5.17: Subset of the graph with data formats and their converters. This figure shows data formats
for color representations.

As LogicGlue uses bytecode to represent drivers, the compiler cannot automatically
determine which data converters are necessary. Consequently, all available converters
are included in the microcontroller’s embedded code by default, resulting in significant
memory overhead. To optimize memory usage, LogicGlue employs C preprocessor
definitions in the driver header files to selectively enable only the relevant converters
during the compilation process, ensuring that unnecessary converters are excluded
from the final code.

5.6 Supporting LogicGlue on a new Platform

The implementation of the LogicGlue interpreter consists of two parts: (a) An implemen-
tation, in C, for parsing the platform-independent driver specifications (bytecodes) and
converting data formats. (b) A platform-specific implementation for communication
protocols, GPIO pin access, and memory allocation. This dual architecture allows for

112

5.7. LOGICGLUE BENCHMARK

convenient porting of the LogicGlue interpreter to different microcontrollers. Porting
LogicGlue to a platform that uses the C programming language only requires imple-
menting the platform-specific functions, which are detailed in Appendix C.1. Since
most microcontroller platforms support C and C++ programming, LogicGlue can be
easily implemented on a broad variety of microcontrollers. We already have support for
the Arduino and nRF52 platforms.

Supporting Logicglue is more complex for platforms that run on programming languages
that do not build on the C language, such as CircuitPython or DeviceScript. Applications
written in these languages are compiled into custom binaries and interpreted on
the microcontroller. In these situations, developers must make a one-time effort to
fully reimplement both the LogicGlue library and the Logicglue interpreter in this
programming language. Alternatively, LogicGlue could be integrated into the runtime
or the language’s SDK that executes the custom binaries, as these are typically written
in C or C++.

5.7 LogicGlue Benchmark

The introduction of software abstraction layers typically introduces overhead. In Log-
icGlue, however, these abstraction layers do not significantly impact the performance
as LogicGlue enables communication between the application logic and electronic
components using the standard protocols and communication signals supported by
the component. This is different from high-level communication protocols like Jac-
dac [Devine, 2022], which requires the translation of every communication signal.
In this section, we benchmark the performance of LogicGlue and demonstrate the
LogicGlue software stack, including the interpreter and programming libraries, does
not significantly impact the performance of interacting with electronic components
compared to using component-specific libraries.

To benchmark our system, we measured the execution times for interacting with
electronic components using component-specific libraries (baseline condition) and using
LogicGlue. We primarily focus on the primary functions of reading and writing data
to and from electronic components. Benchmarking initialization procedures is not
considered as this typically is a short one-time process and thus has limited impact on
the performance. Although LogicGlue embeds many data converters, we did not use
this automated conversion of data formats to ensure a fair performance comparison with
the baseline condition, as component-specific libraries do not support such features.

To benchmark the performance of both basic and advanced interactions, we selected
three different sensors: an RGB LED controlled via three PWM pins (basic), a DHT22 tem-
perature sensor (intermediate), and an SSD1306 display operating over SPI (advanced).
Our tests were conducted on an Arduino Mega microcontroller running the Arduino
platform. In the baseline condition, we interact with the RGB LED using Arduino’s

113

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

“AnalogWrite” function. For the DHT22 temperature sensor, we use the Adafruit DHT
sensor library?, and for the SSD1306 display, we use the Adafruit SSD1306 library!'.

For a precise measurement of execution times, we connected a logic analyzer (Saleae
Logic Pro 8) to an additional GPIO pin and pulled it to VCC and ground at, respectively,
the start and end of the communication. The logic analyzer measures the time this GPIO
pin is high, which represents the duration of the communication. This measurement
technique is common as it allows for precise and reliable measurements of execution
times on a microcontroller. Each test was repeated 100 times.

. Component- X
Electronic g . Relative
Specific LogicGlue)
Component . Difference
Library
RGB LED 0.032ms 0.380ms +1087.50%
DHT?22 Temperature Sensor 4.256ms 4.208ms -1.13%
SSD1306 Display 5.444ms 8.604ms 58.05%

Table 5.1: Execution times for interacting with electronic components using component-specific libraries
versus LogicGlue.

The results are summarized in Table 5.1 and show the median execution time for the
baseline and LogicGlue condition. All execution times are within +0.002 milliseconds,
underscoring the consistency of the measurements in both conditions. Although the
execution time for triggering the RGB LED has increased significantly with LogicGlue,
it remains under 1 millisecond, which is still very fast and negligible in most practical
applications. For context, the refresh rate of a standard 60fps display is about 16
milliseconds per frame, making the slight increase in LED triggering time negligible. For
the DHT?22 temperature sensor and the SSD1306 display, the difference in execution time
with LogicGlue is minimal. The temperature sensor shows a slight decrease in execution
time, and while the display update time has increased, the overall performance remains
efficient. This demonstrates that LogicGlue introduces very little overhead, maintaining
high performance and efficiency across different types of electronic components.

5.8 Discussion and Future Work

LogicGlue’s platform-independent drivers allow for writing hardware-independent
application logic. This significantly simplifies integrating electronic components, as one
does not need to consider technical characteristics, such as protocols and registers. As
a result, LogicGlue also facilitates transitions between different microcontrollers and
electronic components, which fosters experimentation and iterative development. As
such, developers can easily swap components without extensive modifications to the
application logic. However, while LogicGlue automatically handles all data format

Whttps://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/Adafruit_SSD1306

114

https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/Adafruit_SSD1306

5.8. DISCUSSION AND FUTURE WORK

conversions, developers must still understand the functionalities and limitations of both
the original and replacement components. For instance, swapping a high-precision
I2C temperature sensor with a low-precision analog sensor will result in correct data
format conversions but may impact the workings of the application due to the inherent

differences in precision.

Display components present another example where careful consideration is needed.
Swapping an RGB display with another of a different size requires that the visual interface
scales correctly. Replacing an RGB display with a single-color display necessitates
adjustments to accommodate the lack of color, which LogicGlue converts but does not
adapt in terms of design. For example, while LogicGlue automatically converts the
RGB color to a binary color, it can not adjust the interface to accommodate the lack of
color. Similarly, transitioning from a high-resolution OLED display to a low-resolution
dot-matrix display will require application-level modifications to handle the reduced
resolution appropriately. Likewise, replacing, for example, a stepper motor with a DC
motor involves recognizing the differences in control mechanisms and precision. A
stepper motor offers precise position control, which is essential for applications like 3D
printing, whereas a DC motor provides continuous rotation but lacks the same level of
positional accuracy, making it suitable for applications like driving an RC car or a fan.

While software abstraction layers, such as the one offered in LogicGlue, typically
introduce additional latency, LogicGlue enables the application logic to interact with
electronic components using their native signals and protocols. As demonstrated in
the benchmark (Section 5.7), this ensures the performance of our approach is similar
to using the component-specific libraries. For the majority of real-time processing
applications, the minor increase in latency, as reported in the benchmark, is neglectable.
However, in scenarios in which components need to operate in sync, such as some robotic
applications, the minor delay introduced by processing bytecodes might be problematic,
and engineers might want to swap back to native code. Alternative approaches, such as
the Jacdac, operate through an ecosystem of compatible modules that use the Jacdac
protocol via standardized services. To provide this compatibility, each module in
the Jacdac ecosystem contains a microcontroller that translates signals, specific to the
component on that module, to the Jacdac protocol. This approach requires an additional
microcontroller for every component, and the translation introduces overhead. In
addition, the asynchronous nature of the Jacdac data bus can lead to additional delays
and the loss of component-specific functionalities that are not covered by the Jacdac
protocol.

While we benchmarked the performance of LogicGlue, our approach also introduces
additional memory consumption to store the bytecode, the interpreter, and programming
libraries. Each of these, in turn, introduces additional runtime memory usage. Although
highly dependent on compiler settings and optimizations, we measured that LogicGlue
requires around 35kb of flash memory when compiled for Arduino and 55kb for

115

CHAPTER 5. PLUG-AND-PLAY SOFTWARE DRIVERS THROUGH LOGICGLUE

the nRF52840 microcontroller. While memory availability on microcontrollers and
development boards increases every year, the additional memory consumption of
LogicGlue can be an issue for embedded systems with scarce memory resources. To
mitigate this issue, future work can look into strategies for optimizing memory usage
by refining the bytecode and interpreter. For instance, simplifying the data format
converters within LogicGlue could reduce their memory demands. Alternatively,
considering the feasibility of offloading certain processing tasks to external devices like
a connected computer or leveraging cloud computing resources could help conserve the

microcontroller’s memory.

Logicglue eases the work of component manufacturers and engineers of development
platforms as electronic components for which LogicGlue driver specifications are written,
are instantly compatible with all development platforms that support LogicGlue. Like-
wise, new development platforms that implement LogicGlue are instantly compatible
with the wide variety of electronic components that are on the market today. While
LogicGlue requires a one-time effort for a component manufacturer or engineer to write
LogicGlue driver specifications for new electronic components, artificial intelligence
could be used in the future to automatically generate driver specifications from a
component’s datasheet.

LogicGlue’s driver specifications are stored in bytecode format. They are thus very
compact and can be stored in the cloud or on a developer’s computer. As these driver
specifications include all information to interface with the component, we believe
it also makes sense to store this bytecode in the future on a memory chip located
on every component. As this would require component manufacturers to follow a
new standard, a similar, more practical implementation is the use of a shield that
extends any electronic component with a memory chip, as shown in Figure 5.18. This
memory chip could communicate with the LogicGlue Interpreter over 12C or 1-wire,
making it possible to automatically recognize plugged-in components and load their
bytecode driver specifications. We also envision the memory chip hosting additional
information, such as the pinout and operating voltage. This enables new opportunities
to assist the wiring process. To further ease or avoid the component wiring, we see
opportunities for synergies between our research efforts on lowering the barrier for
embedded programming and state-of-the-art solutions to avoid or facilitate component
wiring, such as CircuitGlue [Lambrichts, 2023] or VirtualWire [Lee, 2021]. These
synergies could lead to novel solutions in which any electronic component becomes
plug-and-play, similar to the use of USB to simplify device connectivity.

Lastly, although this chapter does not include a formal user study;, it is significant to
acknowledge the importance of validating the usability and effectiveness of LogicGlue
from an end-user perspective. The block-based interface, for example, is designed
to make driver creation more accessible to users without deep knowledge of specific
microcontroller architectures. However, the actual impact of this interface on user

116

5.9. SUMMARY

<
)
<

P |
O N > X

' YYYYY)
AV VvV VY

1111
8558588
P3 P4 P5 P6 P8

i
®
(C)
P7

o~ (I
2 Ol (@3

t 12C Interface

Figure 5.18: A conceptual illustration of an extension shield equipped with a memory chip allows for the
embedding of a component’s driver, ensuring automatic recognition and configuration by LogicGlue upon
connection.

performance, error rates, and learning curves has not been empirically validated. Future
research should include user studies that focus on these aspects, collecting data on how
both novice users and professional developers interact with LogicGlue. Such studies
could involve tasks that measure the time needed to develop drivers and the efficiency
of the created drivers.

59 Summary

In this chapter, we introduce LogicGlue, a novel framework that streamlines electron-
ics prototyping by creating platform-agnostic drivers for hardware components and
enabling the development of hardware-independent application logic. At the heart of
LogicGlue lies a custom driver specification format and interpreter, which enables the
definition of a component’s functionalities, regardless of platform types or programming
languages. Furthermore, we provide a visual block-based programming interface that
simplifies writing these specifications, making it more accessible to a broader range of

individuals.

LogicGlue addresses the challenges outlined in research question Q3 by providing
a universal driver specification that mitigates compatibility issues between different
software environments and hardware platforms. This solution aligns with research
goal G3 by promoting easier software integration and ensuring that the full functionality
of hardware components remains accessible across various platforms. The technical
evaluation answers research question Q2 by showing that LogicGlue introduces minimal

latency.

While this chapter does not include a formal user study to evaluate LogicGlue’s
usability, its design was directly informed by the practical challenges identified during
the development of CircuitGlue. LogicGlue exemplifies our commitment to making
electronics prototyping more efficient and user-friendly, ultimately contributing to the
democratization of technology creation by providing tools that are accessible to users of
all skill levels.

117

6

ON-GOING RESEARCH INTO UNIFIED

PrLug-aAND-PLAY PROGRAMMING

Motivation

Building on the developments of CircuitGlue and LogicGlue, discussed in Chapters 4
and 5, we identified a unique opportunity to further enhance the electronics prototyp-
ing process by integrating the advantages of both hardware and software solutions.
CircuitGlue addresses the challenges of hardware compatibility by offering a flexible
platform for connecting heterogeneous electronic components. LogicGlue, on the other
hand, extends these principles into the software domain, enabling the development of
platform-independent drivers and facilitating hardware-independent application logic.
However, while each of these solutions effectively addresses its respective domain, the
potential for a unified approach that seamlessly integrates both hardware and software
aspects remains unexplored.

This realization led to the ongoing research into a unified plug-and-play platform, which
we call UniGlue. The motivation behind UniGlue is to create a comprehensive system
that leverages the strengths and learnings from both CircuitGlue and LogicGlue to
provide an even more streamlined and accessible prototyping experience. By combining
hardware flexibility with software adaptability, UniGlue aims to simplify the prototyping
process, making it easier for users of all skill levels to develop, test, and iterate their
electronic projects.

UniGlue addresses the holistic needs of electronics prototyping by ensuring that both the
hardware and software components work together seamlessly. This unified approach
aligns with research question Q3, which seeks to explore strategies for overcoming
compatibility issues between hardware and software components. UniGlue is designed
to eliminate the boundaries that typically separate hardware integration from software
development, thereby enhancing the overall user experience and reducing the complexity
of managing disparate systems.

118

6.1. INTRODUCTION

UniGlue addresses research goals G2 and G3 by bridging the gaps between hardware
and software interactions in a cohesive manner. By integrating the flexible hardware
connectivity of CircuitGlue with the platform-independent driver capabilities of Log-
icGlue, UniGlue enables a more versatile prototyping environment that is not limited
by specific hardware configurations or software platforms. This integration is crucial
for creating a truly plug-and-play experience, where users can focus on innovation and

creativity rather than technical constraints.

While the core of the technical development of UniGlue has been completed, the concept
has not been evaluated by users. This chapter outlines the technical work that has
been done and presents it as a framework for ongoing research. The current progress
represents the initial steps toward achieving a fully integrated platform, and future
work will involve refining the technical implementation based on user feedback and
conducting comprehensive evaluations to validate its usefulness. This ongoing research
into unified plug-and-play programming sets the stage for a future where electronics
prototyping is more accessible, efficient, and inclusive, ultimately contributing to the
democratization of technology creation.

6.1 Introduction

The field of electronics prototyping is continually evolving, driven by the need to make
the design and creation of electronic devices more accessible to a broader audience. As
new technologies and components emerge, there is a growing demand for tools that
simplify the integration of various hardware and software elements, serving as the glue
that binds these systems together, especially for those new to electronics. This chapter
addresses these challenges by introducing a unified approach to prototyping that builds
on existing solutions, providing a seamless way to connect both hardware and software
components.

In chapters 4 and 5, we discussed CircuitGlue and LogicGlue, two systems developed to
address specific issues in the prototyping process. CircuitGlue was designed to simplify
hardware integration, allowing users to easily connect different electronic components
without worrying about compatibility issues such as voltage levels or communication
protocols. LogicGlue, on the other hand, focused on the software side, offering a
platform-independent framework for driver development to make it easier to write code
that works across different microcontrollers.

Building on the strengths of these two systems, this chapter introduces UniGlue, a
platform designed to combine the hardware integration capabilities of CircuitGlue with
the software compatibility features of LogicGlue. UniGlue aims to create a seamless plug-
and-play experience that simplifies both the physical assembly of electronic components
and the software development process. By doing so, it seeks to lower the barriers to
entry for novices, who often face significant challenges when working with unfamiliar

119

CHAPTER 6. ON-GOING RESEARCH INTO UNIFIED PLUG-AND-PLAY PROGRAMMING

hardware and software.

The development of UniGlue is motivated by the recognition that many users, particularly
novices, struggle with the complexities inherent in configuring hardware and writing
software that works across different components and systems. By offering a solution
that bridges the gap between hardware assembly and software development, UniGlue
aims to lower the barriers to entry in electronics prototyping, making it more accessible
to a broader audience.

UniGlue’s approach is centered on creating an open and flexible platform that can
support a wide range of electronic components and microcontrollers. Unlike existing
systems that often restrict users to specific ecosystems, UniGlue is designed to be
adaptable, allowing for the integration of new electronic components as they emerge.
This flexibility is key to ensuring that the platform remains relevant and useful in a rapidly
evolving technological landscape. Furthermore, UniGlue allows direct interaction with
components using their native communication standards, such as digital and analog
GPIO pins, or protocols like 12C and SPI, reducing latency and preserving all unique
features of an electronic component. This stands in contrast to existing solutions like
Jacdac [Devine, 2022] and ROS [ROS, 2024], which translate components into a universal
communication standard, potentially losing component-specific functionalities.

Furthermore, UniGlue offers a true plug-and-play experience with the addition of an
extension shield that permanently attaches to an electronic component. This extension
shield, conceptualized in Chapter 5, contains the technical specifications, image, and
driver in LogicGlue bytecode format. Once plugged in, the extension shield enables
automatic identification and configuration of the electronic component in both hardware
and software. This ensures direct and seamless integration, enhancing efficiency,
reducing development time, and making the prototyping process more accessible
to a broader audience. The UniGlue interface shows plugged-in components, their
information, and code examples demonstrating how to interact with the component.
In addition, the interface allows users to manually select and configure components
akin to the interface used by CircuitGlue in scenarios where an extension shield is not
available or wanted.

While UniGlue represents a significant step forward in simplifying the prototyping pro-
cess, it is still under development, with ongoing efforts to refine its features and expand
its compatibility with additional components. Future work will include evaluations to
better understand its impact on novice users and to explore further enhancements that
could make the platform even more accessible and effective. This chapter delves into
the design and implementation of UniGlue, exploring how it builds on the foundations
laid by CircuitGlue and LogicGlue. It discusses the potential applications of UniGlue
and outlines the future directions for this ongoing research, with the goal of further
democratizing electronics prototyping.

120

6.2. UNIGLUE: BRIDGING HARDWARE AND SOFTWARE FOR UNIFIED PROTOTYPING

6.2 UniGlue: Bridging Hardware and Software for Unified
Prototyping

The complexity of electronics prototyping often poses significant challenges, especially
when it comes to integrating diverse components and ensuring compatibility between
hardware and software. UniGlue aims to address these challenges, building on the
strengths of both CircuitGlue and LogicGlue to provide a unified, plug-and-play
prototyping experience.

By leveraging the platform-independent drivers introduced by LogicGlue, UniGlue
provides a unified interface that simplifies the complexities of interfacing with various
components. The hardware design of UniGlue is built upon the redesigned version of
CircuitGlue, which was discussed in Section 4.11, and inherits all functionalities, such

as the custom diagram generator.

UniGlue consists of two types of boards: a controller board and a logic board. The
controller board (Figure 6.1a) is responsible for managing the overall system, while a
logic board (Figure 6.1b) handles the assignment of the programmable header pins. Each
logic board is equipped with eight programmable header pins, which can be divided
into two sets of four using a splitter board (Figure 6.1c). This modular design allows for
greater flexibility in configuring different components. Compared to CircuitGlue, each
logic board in UniGlue includes its own voltage regulators for the 3.3V and 5V lines, along
with two programmable voltage regulators—one for each set of four programmable pins.
This design allows for more precise voltage control and eliminates voltage restrictions
when driving multiple components with different voltages. Additionally, multiple logic
boards can be chained together to drive multiple components simultaneously. The
number of logic boards that can be chained is only constrained by electrical limitations,
such as voltage degradation of signal noise.

Visual feedback through a display and RGB LEDs on the logic board improves user
interaction and troubleshooting. These visual indicators provide real-time information
on the status of each component and the overall system, making it easier to identify
and resolve issues. This intuitive feedback mechanism enhances the user experience,
making the prototyping process more straightforward and user-friendly. Figure 6.2
shows an example setup of UniGlue, where an OLED display is being controlled.

6.2.1 Shared Resource Bus

Similar to CircuitGlue, UniGlue acts as an intermediary between electronic components
and the user’s microcontroller, facilitating seamless communication and integration.
Unlike CircuitGlue, which translates all component interactions into a universal protocol,
UniGlue allows the user’s application to interact with components using their native
protocols. This flexibility is enabled by the combination of the driver specification
format from LogicGlue and the innovative use of a shared resource bus—a concept

121

CHAPTER 6. ON-GOING RESEARCH INTO UNIFIED PLUG-AND-PLAY PROGRAMMING

EXTENSION
BOARD

Figure 6.1: Components of the UniGlue system, with a) the UniGlue controller board, b) the UniGlue
logic boards, c) the splitter separating the programmable header of the logic board, d) 4-pin UniGlue
extension shield, e) 8-pin UniGlue extension shield, and f) the user’s microcontroller.

inspired by the Peripheral Component Interconnect (PCI) lines in traditional computers.
The shared resource bus consists of multiple parallel data lines that can be dynamically
assigned based on the communication requirements of the connected components. This
dynamic assignment allows the bus to adapt to various protocols and data streams,
ensuring that the full range of the microcontroller’s features can be leveraged. As a
result, UniGlue can efficiently accommodate various communication protocols, such as
12C, SPI, UART, and others, depending on the project’s needs. The current version of
UniGlue includes 16 bus lines, and each logic board makes use of a crosspoint switch to
connect programmable header pins to one or more bus lines.

6.2.2 Communication Bus

The UniGlue communication bus links all logic boards, controller board, UniGlue
interface and user’s microcontroller and enables the interchange of data. In comparison
to CircuitGlue, which uses the I2C protocol for back-end communication between
the controller and logic boards, UniGlue employs the RS5485 standard with a custom
multi-master communication protocol. While I2C is a common choice for interfacing
with sensors and actuators due to its simplicity and effectiveness for small data transfers,
it is less suitable for transmitting large amounts of data. In our experience, when
using I2C for transmitting extensive data, such as bytecode drivers and component
specifications, we encountered frequent issues with devices “hanging” the I12C bus.
Moreover, I2C traditionally operates with a single-master setup, where one central
device controls the communication by polling each connected device for updates. This
setup requires complex management, especially as the number of connected devices

122

6.2. UNIGLUE: BRIDGING HARDWARE AND SOFTWARE FOR UNIFIED PROTOTYPING

3

ol

&
®
E
5
E
5
£

o

Figure 6.2: Example of the UniGlue setup, with a) the UniGlue controller board, b) the UniGlue logic
board, and c) an OLED display connected to the UniGlue extension shield.

increases, which can lead to significant synchronization challenges and inefficiencies.

UniGlue addresses these limitations by implementing a custom multi-master com-
munication protocol over the RS485 standard, illustrated in Figure 6.3. This protocol
allows multiple devices to communicate on the same bus more effectively. It functions
like a notification system, where each device sends an update whenever a significant
event occurs, such as a component being plugged in or a logic board being connected.
Each device in the UniGlue system transmits data using a predefined set of event
codes, indicating the type of data that is transmitted. These codes enable devices to
listen only for relevant messages, reducing unnecessary communication. For example,
the LogicGlue interface is programmed to respond to events indicating that a new
component has been connected, while other logic boards can ignore these messages.
The controller board bridges the RS485 protocol with the WebUSB connection of the
UniGlue Interface, allowing data to be visualized. In addition to sending notifications,
the communication bus is also used to log messages from each device, providing a
valuable tool for debugging.

The UniGlue system incorporates a custom method for managing bus access to prevent
simultaneous data transmission by multiple devices, which could lead to data collisions.
Alongside the standard TX (transmit) and RX (receive) lines used for data communication,
UniGlue introduces a third control line specifically for managing access to the bus.

Figure 6.4 demonstrates how this control line operates when two devices attempt to
transmit data simultaneously. Before initiating data transmission, each device checks
the state of the control line. If the line is high, it indicates that the bus is free, and the
device can take control by pulling the line low. However, if multiple devices check the

123

CHAPTER 6. ON-GOING RESEARCH INTO UNIFIED PLUG-AND-PLAY PROGRAMMING

RS485
Converter

RS485 A+ L 4 \ 4
RS485 B- T

Control

RS485 RS485 RS485
Converter Converter Converter

Address
Logic Logic Controller L0 To PC
Board Board Board =3 and web

interface

Figure 6.3: Block illustration of the RS485 communication bus in the UniGlue system used for back-end
data exchange between all boards.

control line at exactly the same time, they all see that it is high, and all attempt to take
control simultaneously, causing a data collision.

To prevent such collisions, UniGlue implements a unique timing mechanism. Each
device pulls the control line low for a predefined duration, which is calculated using the
device’s unique address and thus varies slightly between devices. After this initial action,
the device checks the state of the control line again. If the line is still low, it indicates
that another device has taken control, and the device will wait before attempting to
transmit again. If the line is high, the device knows it has exclusive control and can
proceed with data transmission.

For instance, in Figure 6.4(a), two devices check the control line simultaneously and
both pull it low, believing the bus is available. However, as illustrated in Figure 6.4(b),
device 1 has a shorter pulse duration. When device 1 checks the control line again and
finds it still low, it recognizes that another device (device 2) has taken control. Device 1
then waits for the next opportunity to transmit. Conversely, in Figure 6.4(c), device 2
checks the line after its pulse duration and finds the line high, confirming that it now
has control. Device 2 then keeps the line low while transmitting data and releases the
control line after completing the transmission, as shown in Figure 6.4(d).

This staggered timing mechanism effectively prevents data collisions by ensuring that
only one device gains control of the bus at a time, enhancing the reliability and efficiency
of the UniGlue back-end communication system.

Additionally, UniGlue automates the assignment of device addresses through a dynamic
addressing mechanism that avoids the need for hard-coded addresses. This is achieved
using a fourth line that connects devices in a daisy-chained topology. When a new
device is connected, it signals its presence by pulling the upstream pin low, indicating

124

6.2. UNIGLUE: BRIDGING HARDWARE AND SOFTWARE FOR UNIFIED PROTOTYPING

Device 1
(address = 0x03)

Pulse duration:
0x03 * 20us + 50us
=110us

N
N

Device 2
(address = 0x04)

Pulse duration:
0x04 * 20us + 50us

Data transmission
=130us

N
\

o 00 d)

Figure 6.4: Timing sequence of the UniGlue control line to manage bus access. (a) Two devices
simultaneously attempt to access the bus by pulling the control line low. (b) Device 1, with a shorter pulse
duration, checks the control line and finds it still low, indicating that another device has taken control. (c)
Device 2, having a longer pulse duration, checks the control line and finds it high, confirming that it now
has control of the bus. (d) Device 2 completes data transmission and releases the control line by returning
it to a high state, making the bus available for other devices.

readiness to receive an address. The upstream device, if it has a valid address itself,
will then broadcast a message with its own address plus one. The new device monitors
the upstream pin, and if it remains low after receiving the message, it accepts the new
address. If the pin goes high, indicating the message is for another device, the new
device waits and repeats the process with the next address notification.

This combination of a robust communication protocol and dynamic addressing allows
UniGlue to handle large data transmissions and coordinate multiple devices more
efficiently than systems relying on the traditional I12C protocol.

6.2.3 UniGlue Interface

The UniGlue interface (Figure 6.5) offers a comprehensive overview of all connected
components, displaying their status and facilitating easy interaction. When a component
is connected, the interface automatically detects it, visually represents the connection, and
assigns a unique name for easy reference in application logic. Users can quickly browse
the functionalities provided by each component and access customizable examples that
demonstrate how to use specific features (Figure 6.6). For advanced users, the interface
includes a Developer Mode that allows them to reprogram an extension shield with a
new driver, offering greater flexibility for customization.

125

CHAPTER 6. ON-GOING RESEARCH INTO UNIFIED PLUG-AND-PLAY PROGRAMMING

UNIGLUE DASHBOARD HOME NEW DevMode ﬂ Blink All ¢ Disconnect

004 [0xf3d5b87)

(&)

0405 [Oxbadbe5bs)

PIR Motion

UID: 0xf3d5fb87 </> GetMotion

Open in playground [

DHT-22

<> GetTemperature

UID: Oxbddbc5b5 <> GetHumidity

Open in playground [

ﬁpen Logs \

Figure 6.5: The UniGlue interface for displaying and interacting with connected electronic components.

The logic board on the bottom uses a splitter board to divide the programmable header into two.

UniGlue supports three methods for configuring components, providing flexibility to

suit different user preferences and needs.

Automatic Configuration with Extension Shields:

When components are equipped with an extension shield, they are automatically
detected and configured by UniGlue without any user interaction. The memory
shield stores the component’s specifications, image, and driver, allowing for offline
use. This method enables a full plug-and-play prototyping experience.

Manual Configuration via the Interface:

Users also have the option to manually specify a component in the UniGlue
interface, similar to the approach used in CircuitGlue. Within the interface, users
can browse through the online database of available components (Figure 6.7a).
Custom Driver Upload:

For scenarios that require testing multiple driver variants or using custom drivers,
users can upload a driver file directly into the interface (Figure 6.7b). This feature
supports experimentation and customization, allowing users to tailor the system
to their specific needs.

126

6.2. UNIGLUE: BRIDGING HARDWARE AND SOFTWARE FOR UNIFIED PROTOTYPING

DHT-22 (Temperature and Humidity Sensor) X

</> GetTemperature:

Fahrenheit v

Basic use
C/C++ Python Javascript

float temperature = sensor_read_as_float(&temperature_sensor); Copy

Example application
C/C++
Copy
#include <UniGlue.h>

#include <UniGlue/drivers/dht-22.h>

component_t component = DEFINE_COMPONENT(dht_22_bytecode);
sensor_t temperature_sensor

void setup() {
uniglue_begin();

initialize_component(&component);

create_temperature_sensor(&component, &temperature_sensor, TEMPERATURE_FAHRENHEIT, SCALE_UNIT);

float temperature = sensor_read_as_float(&temperature_sensor);

Figure 6.6: Popup showing an interactive example for the plugged-in DHT-22 temperature and humidity
sensor. In this example, users can specify the desired output format for the temperature, and copy the
example code directly into their application.

Figure 6.8 illustrates a scenario where a logic board has two connected components: (a)
is detected automatically, and (b) is manually configured.

Additionally, the UniGlue interface provides a convenient method for creating new
drivers. It includes a series of input fields for entering all relevant data, and utilizes
the LogicGlue Blockly Interface to help users create driver code. Once the driver is
complete, users can upload it to the online database or save it locally as a file for future

use. Figure 6.9 shows this interface.

6.2.4 UniGlue Extension Shield

To streamline the integration of electronic components, a UniGlue extension shield
(Figure 6.1d and e) can be permanently attached to an electronic component. This
shield features a memory chip that stores the technical specifications such as pinout and
voltage, driver specifications in LogicGlue bytecode format, and an SVG representation
of the component. The SVG image is compressed using Brotli encoding ! to reduce its

size on the memory chip.

Thttps://brotli.org/

127

https://brotli.org/

CHAPTER 6. ON-GOING RESEARCH INTO UNIFIED PLUG-AND-PLAY PROGRAMMING

Which component do you want to add? X
DHT-22 -OR- upload
=== DHT-22
am =
| n
o Voltage: 3.3V
B : : : - * Current: 0.05A </> GetTemperature
* Pinout:
Bemmd - vee <> GetHumidity
- GND
1111 - PO

- Analog

Confirm

Figure 6.7: Popup for selecting a component (a) or uploading a driver file ().

DHT-22

(=)

</> GetTemperature
UID: Oxbddbc5b5
</> GetHumidity

Open in playground (7'

DHT-22 (custom)

0x05 [0xbddbeSbs]

g ¢</> GetTemperature
e UID: Oxbddbc5b6
<> GetHumidity

Open in playground '

Figure 6.8: Example where component (a) is detected automatically and component (b) is manually
configured.

When a component with an extension shield is connected, it is immediately detected,
and the programmable header is automatically configured to match the component’s
specifications. This automated process eliminates the need for manual setup, greatly
simplifying the user experience and ensuring seamless functionality. The extension
shield communicates with the UniGlue logic board using I2C and contains five pins
beside the pins of the attached electronic component. These pins include two for power,
two for I2C communication, and one to determine the location of the extension shield
on the programmable header in case a splitter board is used.

The UniGlue extension shield guarantees that components are always correctly config-
ured and ready for use, significantly reducing the potential for errors and saving time
during the setup process. This level of automation is particularly useful for users who
may not have extensive technical knowledge, as it removes the complexity of manual
configuration. By handling the technical details, the extension shield allows users to
focus on their project goals and innovation without being bogged down by the intricacies

of component integration.

Two versions of the UniGlue extension shield are available: one with 4 pins (Figure 6.10a)
and one with 8 pins (Figure 6.10b). The 4-pin version is designed for simpler components

128

6.3. WALKTHROUGH

UNIGLUE DASHBOARD HOME NEW

Start from an existing component:
Choose an existing component to start from. You can modify the component and save it as a new component.
Note: this will override all current settings.

type or select... -OR- upload... -OR-
Name
unknown
This name uniquely identifies the component
Description
Very short description of the generic functionality unknown
of the component.
Tag
Shown on the display of the LogicBoard. Should unknown
be less than 10 characters.
Image
The SVG image that will be used to visualize this
component. The size of the image should be as Choose File "unknown.svg"
small as possible.You can compress SVG images
with
Pin-0 Coordinate
To ensure proper visual alignment of the SVG on
the LogicBoard, select the bottom left pin of the Select Pin Opx
component. Click on the button and select the pin
on the displayed image
Voltage 0 v
Specify the operating voltage of the component.
Current
Specify the maximum current used by the 0 A
component
Number of Pins 1 o
Select the number of pins of the component.
Pinout
- : Pin None v
Specify the function of each pin.
#0

Download File Save to Server

Figure 6.9: Image of the UniGlue interface for specifying component specifications for a new driver.

that do not require many connections, while the 8-pin version accommodates more
complex components. When using multiple 4-pin components, a splitter (Figure 6.1c)
can be used to divide the programmable header into two sets of 4 pins each.

6.3 Walkthrough

This section illustrates how UniGlue facilitates the prototyping workflow with an
example where Alex, an electronics hobbyist, uses UniGlue to prototype a smart home
system. This system includes a Raspberry Pi Pico microcontroller, a temperature sensor,
a proximity sensor, and an RGB LED strip, all working together to control the lighting

based on environmental conditions.

Alex starts by connecting the UniGlue controller to his computer using a USB cable
and opening the UniGlue software interface. He then plugs the microcontroller into
the socket on the UniGlue controller and uploads the UniGlue software stack to the
Raspberry Pi Pico.

129

CHAPTER 6. ON-GOING RESEARCH INTO UNIFIED PLUG-AND-PLAY PROGRAMMING

Figure 6.10: UniGlue extension shield with 4 pins (a) or 8 pins (b), depending on the number of pins of
the electronic component.

Next, Alex connects a UniGlue logic board to the controller, chooses a temperature
sensor, and plugs it into the programmable header on the UniGlue logic board. Since
the temperature sensor is equipped with a UniGlue extension shield, Alex does not
need to know the component’s type or specifications. Once plugged in, UniGlue
automatically identifies the sensor as the MCP9808 temperature sensor and configures
the programmable header to supply 3.3V and communicate using the I12C protocol. The
UniGlue interface shows that the MCP9808 is connected and provides a temperature
reading, demonstrating that the component is operational.

Alex then adds another UniGlue logic board to the controller, chooses an infrared
proximity sensor, and plugs it into the programmable header. UniGlue automatically
detects the extension shield of the proximity sensor and configures the programmable
header accordingly. In the UniGlue interface, Alex verifies that the proximity data is
available.

For the RGB LED strip, Alex connects a third UniGlue logic board. Since the RGB LED
strip lacks an extension shield, Alex uses the UniGlue interface to manually select the
RGB LED strip from a drop-down menu and follows the displayed connection diagram
to connect the LED strip to the programmable header. Once connected, Alex downloads
the platform-independent driver for the LED strip and uploads it through the interface.
UniGlue then configures the programmable header to output a PWM signal to control
the LED strip’s red, green, and blue channels.

Using the LogicGlue programming library, Alex writes his application logic. This library
provides easy-to-use functions for interacting with the sensors and the LED strip. Alex
writes a simple script to read temperature and proximity data from the sensors and
change the color of the RGB LED strip based on these readings. Once Alex uploads
his code to the Raspberry P4i, his prototype starts running immediately. However, Alex

130

6.4. DISCUSSION

notices that the proximity sensor’s range is too limited for his application. He quickly
swaps the proximity sensor with a PIR motion sensor containing an extension shield,
which is automatically recognized and configured by UniGlue. Without changing his
application logic, the prototype continues to function, and Alex immediately sees that
the PIR motion sensor offers a wider range.

This example demonstrates how UniGlue simplifies the prototyping process by allowing
users to effortlessly integrate and configure a wide range of electronic components. Using
software-configurable headers and platform-independent drivers, UniGlue provides a
flexible and user-friendly environment for developing sophisticated electronic systems.
With minimal electronics knowledge, Alex can create and expand a smart home system
with ease.

6.4 Discussion

The development of UniGlue marks a significant advancement in the effort to simplify
electronics prototyping and make it more accessible to a diverse range of users. By
combining the functionalities of CircuitGlue and LogicGlue, UniGlue effectively ad-
dresses many of the challenges that have traditionally complicated the prototyping
process, particularly for novices. The integration of hardware and software components
into a single platform reduces the technical barriers that often prevent new users from
engaging fully with electronics prototyping. This unified approach allows users to
focus on creative exploration and innovation rather than being bogged down by the
complexities of configuring hardware connections or developing compatible software.

6.4.1 Plug-and-Play

A central concept underlying UniGlue is the idea of plug-and-play. This approach was
chosen to streamline the prototyping process, making it as intuitive and user-friendly as
possible. Plug-and-play systems are designed to automatically recognize and configure
new devices or components as soon as they are connected. This eliminates the need
for users to manually configure hardware settings or write complex code to establish
compatibility between different components, significantly lowering the barriers to entry
for electronics prototyping.

The plug-and-play concept was particularly appealing for UniGlue for several reasons.
First, it aligns with the goal of democratizing electronics prototyping by making it
accessible to users with varying levels of technical expertise. For beginners, the ability
to connect components and immediately see them working without extensive setup is
incredibly empowering. It allows them to quickly grasp the basics of electronics and
gain confidence in their ability to build and experiment with different systems. For more
experienced users, plug-and-play can accelerate the development process, enabling
rapid prototyping and iteration, though the primary focus of UniGlue is on easing the
entry for novices and educational settings.

131

CHAPTER 6. ON-GOING RESEARCH INTO UNIFIED PLUG-AND-PLAY PROGRAMMING

Another key reason for choosing the plug-and-play approach is its potential to enhance
learning and experimentation. By reducing the complexity of the setup process, users
can spend more time understanding how different components work together and less
time troubleshooting technical issues. This is particularly important in educational
environments, where the goal is to foster a deeper understanding of electronics principles
and encourage hands-on experimentation. The plug-and-play model supports this by
allowing students to focus on learning through doing, rather than getting stuck on
configuration challenges.

6.4.2 Moving from TYPE 2 to TYPE 3

While not strictly required for standard operation, the introduction of the UniGlue
extension shield significantly enhances plug-and-play functionality by automating all
configurations. However, despite its ease of use, a significant challenge lies in the
potential need for a (permanent) modification to TYPE 2 components to make them
“UniGlue-compatible”. These modifications could increase the circuit board footprint
and reduce compatibility with other TYPE 2 prototyping platforms. To mitigate this,
the UniGlue extension shield has been designed to minimize its impact. It maintains
breadboard compatibility by placing all pins in a single row with a consistent offset,
ensuring ease of use without significantly altering the component’s form factor. In
addition, the extension shield does not alter the component’s pin functions but simply
acts as a pass-through.

Despite these efforts to preserve compatibility, the need for any modification raises
important questions about the balance between enhancing user experience through
improved plug-and-play capabilities and maintaining openness and flexibility within
the prototyping ecosystem. Transforming open hardware from TYPE 2 prototyping
into a “UniGlue-compatible” form for TYPE 3 prototyping could be seen as a double-
edged sword in the context of democratizing hardware prototyping. On the one
hand, UniGlue’s plug-and-play system simplifies the prototyping process, making it
more accessible to users who may not have the technical skills required to modify
hardware manually or write intricate software drivers. This aligns with the movement
to democratize hardware prototyping by lowering barriers to entry and enabling more
people to engage in electronics development.

On the other hand, the requirement to modify TYPE 2 components for UniGlue
compatibility could be perceived as a move away from the principles of openness and
flexibility that underpin the maker and open hardware communities. By potentially
locking users into an ecosystem, there is a risk that UniGlue could limit the freedom of
users to mix and match components from different platforms or to reuse components in
diverse projects. This could inadvertently create a divide between users who can afford
to adopt a new system and those who prefer or need to stick with more traditional, open
prototyping platforms.

132

6.5. LIMITATIONS AND FUTURE WORK

The decision to make hardware modifications for UniGlue compatibility brings about
several risks that could push the project in a direction contrary to its intended goals.
One of the primary risks is the alienation of the maker community, which highly values
openness and the ability to modify and customize hardware. If UniGlue is perceived
as a closed or restrictive system, it may deter these users, who are often the most
enthusiastic advocates of new prototyping technologies. Additionally, requiring specific
modifications to components could increase time and financial costs and reduce the
availability of compatible parts, creating further barriers to adoption.

To mitigate these risks and ensure that UniGlue remains aligned with the principles
of democratizing hardware prototyping, several strategies can be considered. First,
UniGlue seeks to maintain maximum compatibility with existing TYPE 2 components
without requiring permanent modifications. This could be achieved by developing
adapters or intermediate modules that enable seamless integration without altering the
components themselves. For example, the current version of the UniGlue extension
shield employs offset holes to create a press-fit connection for components as an
alternative to soldering, a concept initially introduced by SparkFun 2. This can be seen
in Figure 6.11. Second, actively engaging with the maker community to gather feedback
and insights will ensure that the platform evolves to meet the needs of its users and
aligns with their values. By fostering open dialogue and inviting collaboration, UniGlue
can build trust and support among its potential user base.

ADD-ON 8P

4

Figure 6.11: The UniGlue extension shield uses offset pin holes to provide a press-fit connection for
components as an alternative to soldering.

6.5 Limitations and Future Work

While UniGlue offers significant benefits in terms of ease-of-use and flexibility, there
still remain some limitations. The current iteration of the platform has yet to undergo
extensive user testing and technical evaluations, which are essential for understanding
how well UniGlue meets the needs of its intended audience and for identifying areas
where further improvements are needed. Additionally, while UniGlue simplifies the
prototyping process for many users, it may not fully cater to those who require more
advanced control over their hardware and software configurations. Future developments
should consider the needs of these users and explore ways to offer more customization
options without compromising the platform’s accessibility.

2 https://www.sparkfun.com/tutorials/114

133

https://www.sparkfun.com/tutorials/114

CHAPTER 6. ON-GOING RESEARCH INTO UNIFIED PLUG-AND-PLAY PROGRAMMING

A critical area for future development involves conducting comprehensive user evalua-
tions to gather feedback on the platform’s usability and effectiveness. This feedback will
be invaluable for validating and identifying additional features that could enhance the
learning experience. Furthermore, technical assessments will be conducted to expand
compatibility with a broader range of components and microcontrollers, ensuring that
UniGlue remains adaptable and relevant in a rapidly evolving technological landscape.

Looking ahead, several promising areas for future research and development would
further enhance UniGlue’s capabilities. One key direction is the development of an
interactive playground—an interface that visualizes data from connected components
and allows real-time interaction within the hardware, similar to the Jacdac dashboard 2.
This feature would enable users to observe and understand the behavior of different
electronic components more intuitively by providing immediate feedback on how they
function. By making the process more engaging and less intimidating, this interactive
approach could significantly enhance the platform’s educational value, offering users a
deeper insight into how various sensors, actuators, and modules interact within a system.
For example, Figure 6.12 illustrates a potential playground for an ultrasonic distance
sensor, where users can dynamically map distance measurements to corresponding
colors or percentages. Once users are satisfied with their configuration, UniGlue
could then automatically generate a custom driver for the ultrasonic distance sensor,
translating distance readings into colors rather than standard numerical measurements.
As aresult, users can more easily experiment with different sensor behaviors and outputs
without needing extensive programming knowledge. For example, the color output
of the distance sensor can be directly used to set the color of an RGB LED, minimizing
programming. This streamlined process not only accelerates the prototyping phase but
also empowers users to explore creative applications and innovative uses of electronic
components. By simplifying complex interactions and automating driver creation,
UniGlue could help bridge the gap between beginners and more advanced users,
fostering a more inclusive environment for learning and innovation in electronics
prototyping.

Additionally, there is significant potential for UniGlue to be integrated into educational
settings, such as classrooms, workshops, and maker spaces. Future research will
explore how UniGlue can be used to teach fundamental concepts of electronics and
programming, leveraging its intuitive interfaces and interactive playground to create a
more engaging and informative learning experience. By providing an approachable
entry point into electronics, UniGlue has the potential to inspire early interest in STEM
fields and encourage more people to pursue careers in technology.

Finally, exploring the integration of UniGlue with emerging technologies, such as the
Internet of Things (IoT) and machine learning systems, represents another exciting
avenue for future research. By expanding its capabilities and applications, UniGlue could

3 https://microsoft.github.io/jacdac-docs/dashboard/

134

https://microsoft.github.io/jacdac-docs/dashboard/

6.6. CONCLUSION

How to interact with this component?

In this section, you will learn how to interact with the HC-SR04 Ultrasonic Distance Sensor using a microcontroller. You can map your own behavior to each function of the
electronic component.

Output Color v

Map - to 0 cm Map - to 500 cm

Read distance

Read the distance from the sensor to an object. (___ Startmonitor)

Sensor output:

Generate driver

generate driver first... copy.

Figure 6.12: Example illustration of a playground for an ultrasonic distance sensor allowing users to
map numeric distance readings to percentages or colors.

support more advanced prototyping projects, broadening its appeal and usefulness to a
wider range of users.

6.6 Conclusion

This chapter presents UniGlue, an ongoing advancement in the effort to democratize
electronics prototyping, aligning with research goals G2 and G3. By integrating
the strengths of CircuitGlue and LogicGlue into a unified platform, UniGlue offers a
user-friendly solution for both hardware and software integration. The plug-and-play
approach, central to UniGlue’s design, enhances usability and accessibility, making
electronics prototyping more approachable for novices and educational environments.
However, careful consideration must be given to the potential risks and challenges
associated with requiring hardware modifications for compatibility. By maintaining
openness and fostering community engagement, UniGlue can continue to evolve as
a valuable tool for learning and innovation in the field of electronics prototyping. In
addition, further research is required to explore the usability of LogicGlue in an empirical
user study and technical evaluation.

135

7

DiscussioN AND FUTURE WORK

This chapter provides an overarching discussion of the presented work and highlights
future work opportunities.

7.1 Addressing the Research Goals

This dissertation addresses the research goals defined in Section 1.5 aimed at enhancing
the electronics prototyping workflow. Each goal contributes to the broader vision of
democratizing technology creation through improved tools, frameworks, and knowledge.
Below is a detailed overview of how the dissertation meets these goals.

G1: Mapping and Understanding the Electronics Prototyping Domain

The first goal, mapping and understanding the electronics prototyping domain, is
addressed in Chapters 2 and 3 through an extensive analysis of current prototyping
toolkits. This involves a thorough documentation of their functionalities, advantages, and
limitations. By establishing a comprehensive framework, the dissertation systematically
categorizes these tools, helping users of different expertise levels navigate the diverse
range of applications and focus areas of existing toolkits. The research goes beyond
technical specifications by exploring the varied experiences and preferences of users,
from hobbyists to professional engineers. This exploration includes examining the
challenges users face, the tools they prefer, and the strategies they employ to realize their
projects. Through an online survey, firsthand insights are gathered, providing a deep
understanding of user needs and behaviors. These insights inform the development
of tailored solutions that address unmet needs, enhance the efficiency of prototyping
practices, and streamline the decision-making process for selecting appropriate tools.

G2: Bridging Hardware Compatibility and Integration

The second goal is focused on addressing compatibility challenges and the technical
complexities involved in integrating various hardware components within electronics

prototyping workflows. Innovative approaches to hardware integration are developed

136

7.2. THE ROLE OF ECOSYSTEMS IN PHYSICAL COMPUTING

to simplify the process of combining disparate hardware elements, enhancing overall
prototyping efficiency. Thisis exemplified by the introduction of CircuitGlue in Chapter 4,
an electronic converter board that facilitates the integration of diverse components by
enabling software-programmable pin assignments, protocol translations, and voltage

conversions.

G3: Bridging Software Interactions for Prototyping

Complementing the hardware-focused goal, the third objective aims to simplify software
interactions within the prototyping process. This involves developing integrated
software solutions that facilitate seamless communication and interaction between
various applications and hardware devices. LogicGlue is introduced in Chapter 5 as
a software framework that decouples the intricate dependencies between platforms,
software libraries, drivers, and hardware components. By enabling the creation of
platform-independent drivers and applications, LogicGlue enhances the flexibility of
prototyping while preserving the full functionality of hardware components.

7.2 The Role of Ecosystems in Physical Computing

721 Defining and Understanding Ecosystems

In physical computing and electronic prototyping, the term “ecosystem” refers to a
structured environment composed of interconnected hardware, software, standards,
community practices, and knowledge bases that collectively support the development
and deployment of electronic projects. These ecosystems naturally emerge when
developing tools to facilitate and democratize electronics prototyping. They provide a
comprehensive framework where components and tools are designed to work seamlessly
together, thus simplifying the development process and enhancing user experience.
Examples of well-known ecosystems include Arduino [Arduino, 2022], Raspberry Pi [Pj,
2022b], and Lego Mindstorms [Lego, 2022], each offering a cohesive set of resources that
enable users to create a wide range of projects with relative ease.

An ecosystem in electronic prototyping includes several elements: hardware components
like microcontrollers, sensors, actuators, and modular boards designed for interoperabil-
ity; software tools such as Integrated Development Environments (IDEs), libraries, and
drivers that facilitate programming and hardware interaction; standards and protocols
that ensure compatibility among components; and community and documentation
resources like user communities, forums, tutorials, and official guides that support
learning and troubleshooting. These components work together to form a cohesive
environment that simplifies the development process and enhances user experience.

Ecosystems significantly influence the prototyping process by providing a structured
framework that streamlines development. Well-defined ecosystems reduce compatibility
issues, making it easier for users to integrate different components. For instance,

137

CHAPTER 7. DISCUSSION AND FUTURE WORK

platforms like Arduino and Raspberry Pi have extensive libraries and community
support, allowing users to quickly prototype their ideas without delving into low-level
hardware details. Standards within an ecosystem ensure that components and tools
can be easily combined, reducing the learning curve for new users and accelerating the
prototyping process. Ecosystems with robust community support and comprehensive
documentation empower users to overcome challenges and innovate more effectively,
with online forums, tutorials, and example projects providing valuable resources for
troubleshooting and inspiration.

7.2.2 Challenges and Barriers in Ecosystems

While ecosystems provide numerous benefits, they also introduce constraints that often
limit flexibility and innovation. Ecosystems, while designed for simplicity, often restrict
the integration of external or custom components, posing a barrier for advanced users
seeking to push the boundaries of what can be built. Heavy reliance on proprietary tools
and standards can lock users into specific ecosystems, making it difficult to transition to
other platforms or integrate diverse components. These barriers can stifle creativity and
limit the scope of projects that users can undertake within a given ecosystem.

To support a wide range of users, from novices to experts, it is crucial to balance
ease of use with the need for flexibility. Achieving this balance involves designing
ecosystems with adaptable boundaries that can accommodate various user needs
and preferences. Tools like CircuitGlue and LogicGlue exemplify this approach by
offering programmable headers and platform-independent drivers, which facilitate the
integration of diverse components. By promoting open standards and protocols within
ecosystems, compatibility with external components and tools is enhanced, fostering
innovation and enabling users to leverage a broader range of technologies. Designing
ecosystems with the user in mind means providing intuitive interfaces, comprehensive
documentation, and robust community support. These elements lower barriers to entry
and foster a more inclusive environment, encouraging a diverse variety of users to
engage in electronics prototyping and contribute to the ecosystem.

Several ecosystems exemplify the principles of flexibility and structure in electronic
prototyping. The Arduino ecosystem is renowned for its user-friendly approach to
electronics prototyping. With a wide range of compatible shields, sensors, and actuators,
Arduino provides a versatile platform for both beginners and experts. The extensive
community support and wealth of online resources further enhance its appeal. Similarly,
Raspberry Pi offers a powerful single-board computer with flexible platform capabilities
for various applications, from education to industrial automation. Its compatibility with
numerous peripherals and extensive software support makes it a popular choice for

prototyping complex systems.

CircuitGlue, for example, requires a software configuration that includes the pinout,
voltages, and translation code into a universal protocol. This software configuration is

138

7.2. THE ROLE OF ECOSYSTEMS IN PHYSICAL COMPUTING

specific to CircuitGlue and thus requires expertise in both the architecture of CircuitGlue,
the used universal protocol, and the electronic component itself. This specificity
can be seen as a boundary, as users must have a detailed understanding of these
elements to use CircuitGlue effectively. However, once configured, CircuitGlue enables
seamless integration of various components, facilitating rapid prototyping and reducing

development time.

LogicGlue defines its boundaries by the availability of its platform-independent drivers.
These drivers abstract the underlying hardware details, allowing the same driver to
be used across different platforms. While the vision is for hardware manufacturers
to eventually create these drivers, users often need to develop them themselves using
LogicGlue’s block-based interface. This interface requires only an understanding of the
electronic component, making it accessible for users without deep knowledge of specific
microcontroller architectures. As these drivers are platform-independent, community
support can significantly speed up development, as a single driver can work on all
platforms, fostering a collaborative and supportive ecosystem.

UniGlue offers the same ease of use as CircuitGlue but combines it with the flexibility
of LogicGlue’s boundaries. UniGlue simplifies hardware and software integration by
storing driver information on memory chips embedded in the hardware components.
This approach allows for automatic recognition and configuration of components,
making it as easy to use as CircuitGlue while maintaining the flexibility and adaptability
of LogicGlue. This dual advantage makes UniGlue an ideal tool for both novice users
and experienced developers, supporting a wide range of prototyping needs.

7.2.3 The Future of Ecosystems

The future of ecosystems in physical computing and electronic prototyping lies in
enhancing both flexibility and inclusivity. To achieve this, it is crucial to develop tools
and standards that facilitate interoperability between different ecosystems. This will
enable users to integrate a wider range of components and technologies, fostering a more
versatile and dynamic prototyping environment. The ability to seamlessly combine
diverse elements from various ecosystems will not only expand the potential applications
of electronic prototyping but also encourage innovation by removing compatibility
barriers.

In conclusion, ecosystems are integral to the landscape of physical computing and
electronic prototyping, providing the structure and support necessary for innovation.
By balancing structured environments with flexible boundaries, ecosystems can cater
to a diverse range of users and applications. Tools like UniGlue, which emphasize
adaptability and ease of use, demonstrate the potential for ecosystems to democratize
technology and foster a vibrant, inclusive community of creators. As ecosystems continue
to evolve, their ability to support interoperability, adaptive learning, and sustainability
will be key to their success and impact on the future of electronics prototyping.

139

CHAPTER 7. DISCUSSION AND FUTURE WORK

7.3 The Importance of Future User Evaluations

As the development of tools like CircuitGlue and LogicGlue illustrates, simplifying
the electronics prototyping process has great potential to broaden participation and
innovation in this field. However, to truly understand the impact and utility of these
tools, it is essential to conduct comprehensive user evaluations that extend beyond
initial development feedback. Such evaluations are not just a routine step but a crucial
component in validating the tools’ effectiveness and ensuring they meet the evolving
needs of users.

User evaluations provide a critical lens through which we can view the practical
application of CircuitGlue and LogicGlue in varied environments. While the tech-
nical capabilities of these tools have been established, understanding how they are
utilized in real-world scenarios is equally important. Evaluations should focus on
how users from different backgrounds—whether hobbyists, educators, or professional
engineers—navigate the tools, what challenges they encounter, and what aspects of the
tools they find most valuable. For instance, an educator might value ease of use and
integration with classroom activities, while a professional engineer might prioritize
robustness and flexibility.

To gain these insights, a multi-faceted approach to user evaluations is necessary. Rather
than relying solely on one-off surveys or brief testing periods, future research should aim
to include longitudinal studies that track users over extended periods. This approach
will reveal not just initial impressions but also how user experiences evolve over time
as they become more familiar with the tools and integrate them into their workflows.
Such studies can uncover hidden challenges and unexpected benefits that may not be
immediately apparent, providing a more nuanced understanding of how these tools

impact daily practices.

Additionally, in-depth user evaluations can explore specific contexts in which these
tools are deployed. For example, examining the use of CircuitGlue and LogicGlue
in educational settings could provide insights into how these tools can be adapted
to support learning objectives and improve pedagogical outcomes. Are students
more engaged when using these tools? Do they help bridge gaps in understanding
basic electronics concepts? By answering these questions, evaluations can guide the
development of features tailored to educational needs, enhancing the tools’ value in this

domain.

On the other hand, evaluating these tools in professional settings can help identify
features that need enhancement or additional functionality to meet industry standards.
For instance, understanding how engineers use CircuitGlue and LogicGlue in rapid
prototyping or product development can highlight areas where the tools excel and
where they might require further refinement to handle more complex tasks or integrate
with existing professional-grade equipment.

140

7.4. FUTURE DIRECTIONS

Furthermore, user evaluations can provide insights into the tools” long-term sustain-
ability and adaptability. By observing how users’ needs change and how they continue
to use (or abandon) the tools over time, we can identify trends that inform future
iterations. This ongoing dialogue with users ensures that the tools evolve alongside
technological advancements and user expectations, maintaining their relevance and

utility in a fast-paced field.

To maximize the effectiveness of these evaluations, a collaborative approach involving
various stakeholders is essential. Partnering with educational institutions, maker spaces,
and industry professionals allows for a diverse range of perspectives, which is crucial
for developing tools that are versatile and broadly applicable. These collaborations also
facilitate access to different user groups, ensuring that the evaluations capture a wide
spectrum of experiences and use cases.

In summary, while CircuitGlue and LogicGlue represent significant advancements in
electronics prototyping, their true potential can only be realized through comprehensive
user evaluations. These evaluations are not merely a procedural formality but a
fundamental part of the iterative design process. By engaging deeply with users,
understanding their needs, and adapting to their feedback, we can ensure that these
tools continue to empower a diverse range of users, from beginners to experts, in their

creative and technical endeavors.

7.4 Future Directions

Looking ahead, several areas offer potential for further advancements in the field of
electronic prototyping, based on the research presented in this dissertation.

7.4.1 Responsive Application Code

In section 5.8, we briefly discussed the concept of swapping electronic components
with minimal to no changes to the application code. This focus on replacing electronic
components highlights the advantages provided by LogicGlue’s platform-independent
drivers, which abstract the technical details of individual components. This allows de-
velopers to swap components seamlessly without rewriting application logic. However,
in practice, replacing components introduces a broader set of considerations beyond
software compatibility, and these can affect the overall functionality, performance, and
system design. As we look to the future, it is important to explore how these challenges
can be addressed in a more comprehensive manner, drawing parallels with the evolution
of responsive design in web development.

In the world of web development, responsive design has become a critical concept,
allowing websites to adapt dynamically to different screen sizes, resolutions, and
device capabilities. This flexibility ensures that users receive an optimized experience
regardless of the device they are using, from mobile phones to large desktop monitors.

141

CHAPTER 7. DISCUSSION AND FUTURE WORK

A similar concept could be applied to electronics prototyping: creating “responsive”
application code that is adaptable and robust enough to accommodate changes in
hardware components without sacrificing functionality or performance.

In electronics prototyping, the ability to seamlessly swap out components while main-
taining application functionality is crucial as new hardware becomes available or as
project requirements evolve. However, much like a responsive website that adjusts its
layout based on screen size, a robust prototyping system should adapt its behavior
based on the capabilities of the newly introduced components. This means not only
ensuring compatibility at the software level but also dynamically adjusting performance
parameters, energy consumption, and operational precision based on the characteristics

of the new hardware.

For example, if a high-precision I12C temperature sensor is replaced with a less accurate
analog sensor, the application should adapt its data handling processes accordingly,
perhaps by adjusting sampling rates or implementing data smoothing algorithms to
compensate for the lower fidelity. This requires the application code to be inherently
flexible, capable of recognizing the specifications of new components and altering its
behavior dynamically—much like a responsive website resizes its elements for smaller
displays. Similarly, when replacing an RGB OLED display with a monochrome one, the
system should automatically adjust how it renders graphical content, ensuring legibility
and usability even on a less capable display. Another example would be replacing
a GPS module with a lower-precision Wi-Fi-based location module. In this case, the
system would need to adapt by reducing its reliance on fine-grained geolocation data,
perhaps switching to an approximate location mode and adjusting features such as
route mapping or distance calculations to ensure the system remains functional, albeit

with less precision.

One of the key challenges in developing such a responsive system for hardware is
ensuring that the code can not only recognize the new components but also understand
their unique constraints and capabilities. LogicGlue, by abstracting the communication
layer between components and application logic, takes a significant step toward this
goal. It enables components to be swapped without requiring developers to manually
adjust for communication protocols, pin mappings, or driver specifications.

However, there is more to be considered. Just as responsive web design involves more
than simply resizing content, responsive prototyping systems must address a range of
hardware-specific variations, such as:

¢ Precision and Resolution:
When replacing components like sensors or actuators, the resolution or precision
may change. This is particularly relevant for sensors, where high-resolution
data might be required for certain applications. The software should adapt by
modifying how data is processed or by providing additional feedback to the user
if the new component’s precision does not meet the required threshold.

142

7.4. FUTURE DIRECTIONS

¢ Timing and Latency:
Different components may introduce variations in data retrieval or response times.
For example, replacing a fast SPI-based sensor with an I2C-based sensor may
increase communication latency. The system should adapt its timing constraints
or adjust the frequency of updates to ensure that real-time requirements are still
met.

¢ Power Consumption:
Some components may consume more power than their predecessors, requiring
adjustments in power management strategies. Responsive application code could
dynamically adjust the duty cycle of components, manage sleep modes more
effectively, or alert the user when a more energy-efficient alternative should be
considered.

¢ Physical Footprint and Mounting:
Just as websites need to adjust for different screen real estate, electronics prototypes
must consider the physical size and form factor of components. A larger sensor or
motor might not fit within the original design constraints, requiring adjustments
to the physical layout or housing.

The ultimate goal is to build applications that are hardware-agnostic, capable of
interfacing with a wide range of components without compromising performance or
user experience. This requires an ecosystem where hardware abstraction is coupled
with intelligent, adaptive software that can adjust application behavior in response to
the hardware changes detected.

A possible extension of this concept would involve the development of standardized
profiles for various types of components, similar to how CSS media queries handle
different display types in web development. These profiles would define the core
characteristics of each component type, enabling the application to adjust its behavior
based on real-time detection of the component’s capabilities. For example, a motor
profile might include parameters for torque, speed, and power consumption, and the
application could adjust its control algorithms to optimize performance based on the
available motor.

By developing these standardized profiles and incorporating dynamic detection and
response mechanisms, the prototyping system would become more resilient to hardware
changes. It could not only ensure compatibility but also provide meaningful adaptations
that maintain the integrity of the application even when the underlying hardware shifts.

As electronics prototyping becomes more modular and adaptable, the concept of
hardware-responsive application code could revolutionize the field, much like responsive
design transformed web development. This shift would allow developers to build
more resilient systems capable of evolving alongside hardware advancements, ensuring
longevity and flexibility in their designs. Platforms like LogicGlue and CircuitGlue are
paving the way by abstracting hardware complexities, but future developments will

143

CHAPTER 7. DISCUSSION AND FUTURE WORK

need to incorporate dynamic adaptability, enabling a truly hardware-agnostic approach
to electronics prototyping.

In conclusion, while LogicGlue and CircuitGlue significantly reduce the complexity
of replacing components by abstracting low-level details, there is still a need to build
adaptive, responsive application code that can dynamically adjust to hardware changes.
By drawing on concepts from responsive web design, the future of electronics prototyping
could evolve toward systems that not only integrate components seamlessly but also
optimize their behavior based on the unique characteristics of the hardware being used.
This approach would enhance the flexibility, scalability, and resilience of prototypes,
ensuring that they can evolve with technology while maintaining their core functionality
and performance.

7.4.2 Configuration through Hardware and Software

The evolution of the UniGlue platform opens new avenues for exploring the dynamic in-
terplay between hardware and software in electronics prototyping. UniGlue’s flexibility
allows for seamless integration and configuration of components, paving the way for
further innovation in prototype design and functionality. One promising direction is
direct hardware configuration, complementing the existing software-driven approach.
This method, which involves connecting components like a button and an LED directly
in hardware without software intervention, echoes traditional electronics principles
exemplified by Integrated Circuits (ICs) such as the 555 timer. Exploring direct hardware
configurations within the UniGlue ecosystem could lead to more intuitive prototyping
solutions with rapid response times and lower power consumption.

UniGlue’s advanced hardware design enables control over both hardware and software
elements, allowing prototypes to adapt dynamically based on software commands. This
is particularly useful for creating adaptive systems, such as light sensors that modify
their sensitivity or operational parameters in response to environmental changes. These
adjustments, managed through LogicGlue’s driver instructions, are executed by altering
the hardware setup via CircuitGlue’s capabilities. Future developments could integrate
concepts from the VirtualComponent [Kim, 2019] framework, which allows for the
digital insertion of electronic components into a system. This integration would enhance
UniGlue’s capacity for dynamic adjustments, enabling deeper interaction between the
physical and digital aspects of prototyping.

7.4.3 Modular Hardware Design

Exploring modular PCBs presents an innovative pathway in advancing electronics
prototyping platforms. This concept envisions a prototyping environment where
individual sections of a PCB can be swapped or upgraded to align with evolving project
requirements or incorporate new functionalities without replacing the entire circuit

board. The UniGlue platform, with its adaptability, is ideally positioned to embrace

144

7.4. FUTURE DIRECTIONS

these hardware modifications seamlessly, eliminating the need for cumbersome manual

adjustments.

For example, consider motor driver modules in 3D printer controller boards. As
illustrated in Figure 7.1, these modules easily slot into the main board’s sockets, allowing
straightforward customization or replacement without needing a new controller board.
Traditionally, such systems rely on a uniform pin layout across all driver modules
to ensure compatibility. However, UniGlue offers a more versatile solution capable
of dynamically recognizing and adjusting to the specific pinout of any connected

component.

Figure 7.1: Example of a modular PCB with replaceable motor drivers. Photo by BIGTREETECH (SKR3
EZ control board).

This modular approach enhances the customization potential for users and significantly
extends the lifecycle and utility of prototyping boards. By facilitating easy upgrades
and adjustments, UniGlue empowers users to experiment and innovate with greater
freedom. This shift towards modular PCB design represents a significant step forward
in making electronics prototyping more accessible, flexible, and sustainable.

7.4.4 Moving from Prototype to Product

The transition from prototype to product, particularly in electronics, has garnered
increased focus in recent years, with a trend towards isotyping—integrating prototype
functionalities into final, market-ready products [Hodges, 2019b]. While advancements
like CircuitGlue and LogicGlue have contributed to this process, they predominantly
revolve around producing an enhanced fixed version of the initial prototype. To align

145

CHAPTER 7. DISCUSSION AND FUTURE WORK

with the evolving trend of isotyping, future research should explore more flexible

approaches for creating embedded systems.

One approach is integrating all components onto a single PCB, we refer to as flattening.
This move shifts away from modular prototyping towards a more unified and product-
ready design. There are several considerations based on the level of integration:

* Reusing existing components by designing sockets for them on the final PCB
maintains modularity while achieving a more finished product form factor.

¢ Directly incorporating the design of individual components into the PCB layout
reduces physical bulk and streamlines design, though it requires access to original
component schematics.

¢ Optimizing the entire system design to eliminate redundancy, leading to minia-
turization and removal of unnecessary components.

Each integration strategy brings its own considerations and challenges, such as com-
ponent availability in the rapidly evolving electronics market. Designing for flexibility
ensures that products can adapt to future changes without requiring a complete redesign.
Additionally, transitioning from modular prototypes to single PCB designs raises ques-
tions about repairability, upgradability, and customization. Future research should
balance the benefits of integrated design with practical considerations of maintenance

and upgrades over the product lifecycle.

7.4.5 Enhancing Collaboration and Community Engagement

Collaboration and community engagement are essential for advancing physical comput-
ing and fostering innovation. The proposed framework should support collaborative
development and knowledge sharing among users. This could involve creating online
platforms where users can share projects, exchange ideas, and collaborate on new
developments.

CircuitGlue and LogicGlue can significantly enhance collaboration and community en-
gagement. CircuitGlue’s universal connectivity and LogicGlue’s platform-independent
drivers make it easier for users to share and replicate projects. Online repositories where
users can upload and download driver specifications, configurations, and project files
would facilitate collaboration and community learning.

Engaging with diverse communities can bring new perspectives and insights into
developing prototyping tools. Involving users from different backgrounds can help
identify unique challenges and opportunities for making prototyping more inclusive and
accessible. Future research should explore ways to enhance community engagement,
ensuring that the benefits of physical computing are widely shared. Educational
outreach programs and partnerships with schools and community organizations can
help disseminate these tools to a broader audience, fostering a diverse and inclusive
community of makers and innovators.

146

7.4. FUTURE DIRECTIONS

7.4.6 Addressing Environmental and Sustainability Concerns

As physical computing grows, it is increasingly important to consider the environmental
and sustainability implications of prototyping activities. Electronic waste is a significant
concern, and the proliferation of prototyping tools and components can contribute to
this issue. Future work should explore ways to make prototyping more sustainable, such
as developing reusable and recyclable components, minimizing hazardous materials,
and promoting responsible disposal practices.

One crucial aspect of sustainability is the reuse of components. Encouraging component
reuse reduces waste and promotes cost-effective practices. CircuitGlue and LogicGlue
inherently support component reuse through their modular and reconfigurable nature.
Designing components with disassembly and reuse in mind can significantly extend
their lifecycle and reduce environmental impact. Implementing modular designs where
parts can be upgraded or replaced without discarding the entire device further enhances
sustainability.

Educational programs and community initiatives can also promote component reuse.
Workshops and tutorials that teach individuals how to salvage and repurpose compo-
nents from old or broken devices foster a culture of sustainability. Online platforms for
exchanging or donating unused components help reduce waste and make prototyping
more accessible.

Furthermore, the energy consumption of electronic devices is a critical factor in their
environmental impact. Research should focus on developing energy-efficient compo-
nents and systems and exploring renewable energy sources for powering interactive
devices. By prioritizing sustainability, the proposed framework can contribute to more

environmentally friendly practices in physical computing.

147

8

CONCLUSION

This dissertation explores electronic prototyping workflows, identifying key challenges
and proposing innovative solutions to advance the field. Through an extensive literature
review and user study, we developed a detailed framework for evaluating electronic
prototyping platforms, with a focus on usability rather than just technical specifications.
The study revealed a significant gap between user expectations and the actual perfor-
mance of existing platforms, emphasizing the need for solutions that better align with

user needs.

Based on these findings, we introduced CircuitGlue and LogicGlue, each designed to
address specific aspects of the prototyping process. CircuitGlue simplifies the physical
assembly of hardware components, making it easier for users to build and modify their
projects. LogicGlue, on the other hand, streamlines software integration by enabling the
creation of drivers that function across various platforms, thus reducing the complexity
involved in programming and component interaction.

In addition to these contributions, we have also explored the concept of UniGlue as an
ongoing project that combines the strengths of CircuitGlue and LogicGlue. UniGlue aims
to further simplify the prototyping experience by enabling plug-and-play functionality
with off-the-shelf components. A key feature of this concept is its extension shield, which
includes an embedded memory chip that stores all necessary component information.
When a component is connected, UniGlue automatically configures the software driver,
hardware pinout, and voltage settings, removing common obstacles in hardware and
software integration. While UniGlue is still in the development phase, its potential to
enhance user experience and accessibility in electronics prototyping is promising.

In summary, this dissertation presents a new approach to electronic prototyping that
prioritizes ease of use and inclusivity, seamlessly integrating hardware and software
processes. While CircuitGlue and LogicGlue mark significant steps toward achieving
these goals, UniGlue represents an exciting avenue for future work.

148

Academic Sources

[Agrawal, 2015]

[Alphonsus, 2016]

[Anderson, 2017]

[Austin, 2020]

[Ball, 2019]

BiBLIOGRAPHY

Harshit Agrawal, Udayan Umapathi, Robert Kovacs, Johannes
Frohnhofen, Hsiang-Ting Chen, Stefanie Mueller, and Patrick
Baudisch. “Protopiper: Physically Sketching Room-Sized Objects
at Actual Scale”. In: Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology. UIST "15. Charlotte, NC,
USA: Association for Computing Machinery, Nov. 5, 2015, pp. 427-
436. 1sBN: 978-1-4503-3779-3. por: 10 . 1145 /2807442 . 2807505.
URL: https://doi.org/10.1145/2807442.2807505 (visited on
05/05/2020).

Ephrem Ryan Alphonsus and Mohammad Omar Abdullah. “A
review on the applications of programmable logic controllers
(PLCs)”. In: Renewable and Sustainable Energy Reviews 60 (2016),
pp- 1185-1205. 1ssN: 1364-0321. por: https://doi.org/10.1016/j
.rser.2016.01.025. urL: https://www.sciencedirect.com/sc
ience/article/pii/S1364032116000551.

Fraser Anderson, Tovi Grossman, and George Fitzmaurice.
“Trigger-Action-Circuits: Leveraging Generative Design to En-
able Novices to Design and Build Circuitry”. In: Proceedings of
the 30th Annual ACM Symposium on User Interface Software and
Technology. UIST "17. Québec City, QC, Canada: Association for
Computing Machinery, 2017, pp. 331-342. 1seN: 9781450349819.
por: 10.1145/3126594.3126637. urL: https://doi.org/10.114
5/3126594.3126637.

Jonny Austin, Howard Baker, Thomas Ball, James Devine, Joe
Finney, Peli De Halleux, Steve Hodges, Michat Moskal, and Gareth
Stockdale. “The BBC micro:bit: from the U.K. to the world”. In:
Communications of the ACM 63.3 (Feb. 24, 2020), pp. 62—69. 1ssN:
0001-0782. por: 10.1145/3368856. URL: https://doi.org/10.11
45/3368856 (visited on 05/06/2020).

Thomas Ball, Peli de Halleux, and Michat Moskal. “Static Type-
Script: an implementation of a static compiler for the TypeScript
language”. In: Proceedings of the 16th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes. MPLR
2019. Athens, Greece: Association for Computing Machinery, 2019,

151

https://doi.org/10.1145/2807442.2807505
https://doi.org/10.1145/2807442.2807505
https://doi.org/https://doi.org/10.1016/j.rser.2016.01.025
https://doi.org/https://doi.org/10.1016/j.rser.2016.01.025
https://www.sciencedirect.com/science/article/pii/S1364032116000551
https://www.sciencedirect.com/science/article/pii/S1364032116000551
https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/3368856
https://doi.org/10.1145/3368856
https://doi.org/10.1145/3368856

BIBLIOGRAPHY

[Banzi, 2008]

[Bdeir, 2009]

[Blikstein, 2013a]

[Blikstein, 2013b]

[Blikstein, 2015]

[Buechley, 2005]

[Buechley, 2008]

[Charmaz, 2014]
[Devine, 2018]

[Devine, 2022]

pp- 105-116. 1sen: 9781450369770. por: 10.1145/3357390.3361032.
URL: https://doi.org/10.1145/3357390.3361032.

Massimo Banzi. Getting Started with Arduino. Ill. Sebastopol, CA:
Make Books - Imprint of: O'Reilly Media, 2008. 1sBN: 978-0-596-
15551-3.

Ayah Bdeir. “Electronics as Material: LittleBits”. In: Proceedings of
the 3rd International Conference on Tangible and Embedded Interaction.
TEI '09. Cambridge, United Kingdom: Association for Computing
Machinery, 2009, pp. 397-400. 1sBn: 9781605584935. por: 10.1145
/1517664.1517743. urL: https://doi.org/10.1145/1517664.1
517743.

Paulo Blikstein. “Digital fabrication and ‘making’ in education:
The democratization of invention”. In: FabLabs: Of machines, makers
and inventors 4.1 (2013), pp. 1-21.

Paulo Blikstein. “Gears of our childhood: constructionist toolkits,
robotics, and physical computing, past and future”. In: Proceedings
of the 12th international conference on interaction design and children.
2013, pp. 173-182.

Paulo Blikstein et al. “Computationally Enhanced Toolkits for
Children: Historical Review and a Framework for Future Design.”
In: Found. Trends Hum. Comput. Interact. 9.1 (2015), pp. 1-68.

L. Buechley, N. Elumeze, C. Dodson, and M. Eisenberg. “Quilt
Snaps: A fabric based computational construction kit”. In: IEEE In-
ternational Workshop on Wireless and Mobile Technologies in Education
(WMTE’05). New York, NY, USA: IEEE Institute of Electrical and
Electronics Engineers, Dec. 28, 2005, 3 pp. 1sBN: 978-0-7695-2385-9.
por: 10.1109/WMTE. 2005.55.

Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali Crockett.
“The LilyPad Arduino: using computational textiles to investi-
gate engagement, aesthetics, and diversity in computer science
education”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI "08. Florence, Italy: Association
for Computing Machinery, Apr. 6, 2008, pp. 423-432. 1sBN: 978-1-
60558-011-1. por: 10.1145/1357054.1357123. urL: https://doi
.org/10.1145/1357054.1357123 (visited on 05/05/2020).

Kathy Charmaz. Constructing grounded theory. sage, 2014.

James Devine, Joe Finney, Peli de Halleux, Michat Moskal, Thomas
Ball, and Steve Hodges. “MakeCode and CODAL: intuitive and
efficient embedded systems programming for education”. In:
SIGPLAN Not. 53.6 (June 2018), pp. 19-30. 1ssn: 0362-1340. por:
10.1145/3299710.3211335. urL: https://doi.org/10.1145/32
99710.3211335.

James Devine, Michal Moskal, Peli de Halleux, Thomas Ball, Steve
Hodges, Gabriele D’Amone, David Gakure, Joe Finney, Lorraine
Underwood, Kobi Hartley, Paul Kos, and Matt Oppenheim. “Plug-
and-play Physical Computing with Jacdac”. In: Proc. ACM Interact.

152

https://doi.org/10.1145/3357390.3361032
https://doi.org/10.1145/3357390.3361032
https://doi.org/10.1145/1517664.1517743
https://doi.org/10.1145/1517664.1517743
https://doi.org/10.1145/1517664.1517743
https://doi.org/10.1145/1517664.1517743
https://doi.org/10.1109/WMTE.2005.55
https://doi.org/10.1145/1357054.1357123
https://doi.org/10.1145/1357054.1357123
https://doi.org/10.1145/1357054.1357123
https://doi.org/10.1145/3299710.3211335
https://doi.org/10.1145/3299710.3211335
https://doi.org/10.1145/3299710.3211335

ACADEMIC SOURCES

[Drew, 2016]

[Eisenberg, 2002]

[Garg, 2022]

[Greenberg, 2001]

[Grosse-Puppendahl, 2017]

[Guljajeva, 2022]

[Hamdan, 2018]

Mob. Wearable Ubiquitous Technol. 6.3 (Sept. 2022). por: 10.1145/35
50317. urL: https://doi.org/10.1145/3550317.
Daniel Drew, Julie L. Newcomb, William McGrath, Filip Mak-
simovic, David Mellis, and Bjérn Hartmann. “The Toastboard:
Ubiquitous Instrumentation and Automated Checking of Bread-
boarded Circuits”. In: Proceedings of the 29th Annual Symposium
on User Interface Software and Technology. UIST "16. Tokyo, Japan:
Association for Computing Machinery, 2016, pp. 677-686. 1sBN:
9781450341899. por: 10.1145/2984511.2984566. URL: https://d
0i.org/10.1145/2984511.2984566.
Michael Eisenberg, Ann Eisenberg, Mark Gross, Khomkrit
Kaowthumrong, Nathaniel Lee, and Will Lovett. “Computationally-
enhanced construction kits for children: Prototype and principles”.
In: Proceedings of the Fifth International Conference of the Learning
Sciences. 2002, pp. 23-26.
Radhika Garg and Hua Cui. “Social Contexts, Agency, and Con-
flicts: Exploring Critical Aspects of Design for Future Smart Home
Technologies”. In: ACM Trans. Comput.-Hum. Interact. 29.2 (Jan.
2022). 1ssN: 1073-0516. por: 10.1145/3485058. urL: https://doi
.org/10.1145/3485058.
Saul Greenberg and Chester Fitchett. “Phidgets: easy development
of physical interfaces through physical widgets”. In: Proceedings
of the 14th annual ACM symposium on User interface software and
technology. UIST 01. Orlando, Florida: Association for Computing
Machinery, Nov. 11, 2001, pp. 209-218. 1sBN: 978-1-58113-438-4.
por: 10.1145/502348.502388. urL: https://doi.org/10.1145/5
02348.502388 (visited on 05/05/2020).
Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael
Wimmer, Oskar Bechtold, Steve Hodges, Matthew S Reynolds, and
Joshua R Smith. “Finding common ground: A survey of capacitive
sensing in human-computer interaction”. In: Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. 2017,
pp- 3293-3315.
Varvara Guljajeva and Mar Canet Sola. “Dream Painter: An Inter-
active Art Installation Bridging Audience Interaction, Robotics,
and Creative Al”. In: Proceedings of the 30th ACM International Con-
ference on Multimedia. MM "22. <conf-loc>, <city>Lisboa</city>,
<country>Portugal</country>, </conf-loc>: Association for Com-
puting Machinery, 2022, pp. 7235-7236. 1sBn: 9781450392037. por:
10.1145/3503161.3549976. urRL: https://doi.org/10.1145/35
03161.3549976.
Nur Al-huda Hamdan, Simon Voelker, and Jan Borchers.
“Sketch&Stitch: Interactive Embroidery for E-textiles”. In: Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing
Systems. CHI "18. Montreal QC, Canada: Association for Comput-
ing Machinery, Apr. 19, 2018, pp. 1-13. 1sBn: 978-1-4503-5620-6.

153

https://doi.org/10.1145/3550317
https://doi.org/10.1145/3550317
https://doi.org/10.1145/3550317
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/3485058
https://doi.org/10.1145/3485058
https://doi.org/10.1145/3485058
https://doi.org/10.1145/502348.502388
https://doi.org/10.1145/502348.502388
https://doi.org/10.1145/502348.502388
https://doi.org/10.1145/3503161.3549976
https://doi.org/10.1145/3503161.3549976
https://doi.org/10.1145/3503161.3549976

BIBLIOGRAPHY

[Hartmann, 2006]

[Hodges, 2020]

[Hodges, 2019a]

[Hodges, 2019b]

[Hodges, 2013]

[Hodges, 2014]

[Hodges, 2012]

[Karchemsky, 2019]

por: 10.1145/3173574.3173656. URL: https://doi.org/10.114
5/3173574.3173656 (visited on 05/05/2020).

Bjorn Hartmann, Scott R. Klemmer, Michael Bernstein, Leith
Abdulla, Brandon Burr, Avi Robinson-Mosher, and Jennifer Gee.
“Reflective physical prototyping through integrated design, test,
and analysis”. In: Proceedings of the 19th annual ACM symposium
on User interface software and technology - UIST ’06. the 19th annual
ACM symposium. Montreux, Switzerland: ACM Press, 2006, p. 299.
1sBN: 978-1-59593-313-3. por: 10.1145/1166253.1166300. urL: h
ttp://dl.acm.org/citation. cfm?doid=1166253.1166300
(visited on 05/06/2020).

Steve Hodges. “Democratizing the Production of Interactive Hard-
ware”. In: Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 5-6. 1sBn: 9781450375146. URL:
https://doi.org/10.1145/3379337.3422877.

Steve Hodges and Nicholas Chen. “Long Tail Hardware: Turning
Device Concepts Into Viable Low Volume Products”. In: IEEE
Pervasive Computing 18 (Oct. 1, 2019), pp. 51-59. por: 10. 1109
/MPRV.2019.2947966.

Steve Hodges and Nicholas Chen. “Long Tail Hardware: Turning
Device Concepts Into Viable Low Volume Products”. In: IEEE
Pervasive Computing 18.4 (Dec. 2019), pp. 51-59. urL: https://www
.microsoft.com/en-us/research/publication/long-tail-h
ardware-turning-device-concepts-into-viable-low-volum
e-products/.

Steve Hodges, James Scott, Sue Sentance, Colin Miller, Nicolas
Villar, Scarlet Schwiderski-Grosche, Kerry Hammil, and Steven
Johnston. “.NET Gadgeteer: A New Platform for K-12 Computer
Science Education”. In: Proceeding of the 44th ACM Technical Sympo-
sium on Computer Science Education. SIGCSE "13. Denver, Colorado,
USA: Association for Computing Machinery, 2013, pp. 391-396.
1sBN: 9781450318686. por: 10.1145/2445196.2445315. urL: https:
//doi.org/10.1145/2445196.2445315.

Steve Hodges, Nicolas Villar, Nicholas Chen, Tushar Chugh, Jie
Qi, Diana Nowacka, and Yoshihiro Kawahara. “Circuit stickers:
peel-and-stick construction of interactive electronic prototypes”.
In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. CHI "14. Toronto, Ontario, Canada: Association
for Computing Machinery, Apr. 26, 2014, pp. 1743-1746. 1sBN:
978-1-4503-2473-1. por: 10.1145/2556288.2557150. URL: https:
//doi.org/10.1145/2556288.2557150 (visited on 05/05/2020).

Steve Hodges, Nicolas Villar, James Scott, and Albrecht Schmidt.
“A New Era for Ubicomp Development”. In: IEEE Pervasive Com-
puting 11.1 (2012), pp. 5-9. por: 10.1109/MPRV.2012.1.

Mitchell Karchemsky, J.D. Zamfirescu-Pereira, Kuan-Ju Wu,
Francois Guimbretiére, and Bjoern Hartmann. “Heimdall: A

154

https://doi.org/10.1145/3173574.3173656
https://doi.org/10.1145/3173574.3173656
https://doi.org/10.1145/3173574.3173656
https://doi.org/10.1145/1166253.1166300
http://dl.acm.org/citation.cfm?doid=1166253.1166300
http://dl.acm.org/citation.cfm?doid=1166253.1166300
https://doi.org/10.1145/3379337.3422877
https://doi.org/10.1109/MPRV.2019.2947966
https://doi.org/10.1109/MPRV.2019.2947966
https://www.microsoft.com/en-us/research/publication/long-tail-hardware-turning-device-concepts-into-viable-low-volume-products/
https://www.microsoft.com/en-us/research/publication/long-tail-hardware-turning-device-concepts-into-viable-low-volume-products/
https://www.microsoft.com/en-us/research/publication/long-tail-hardware-turning-device-concepts-into-viable-low-volume-products/
https://www.microsoft.com/en-us/research/publication/long-tail-hardware-turning-device-concepts-into-viable-low-volume-products/
https://doi.org/10.1145/2445196.2445315
https://doi.org/10.1145/2445196.2445315
https://doi.org/10.1145/2445196.2445315
https://doi.org/10.1145/2556288.2557150
https://doi.org/10.1145/2556288.2557150
https://doi.org/10.1145/2556288.2557150
https://doi.org/10.1109/MPRV.2012.1

ACADEMIC SOURCES

[Kawahara, 2013]

[Kazemitabaar, 2016]

[Kazemitabaar, 2017]

[Khurana, 2020]

[Kim, 2020a]

[Kim, 2019]

Remotely Controlled Inspection Workbench For Debugging
Microcontroller Projects”. In: Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems - CHI "19. the 2019 CHI
Conference. Glasgow, Scotland Uk: ACM Press, 2019, pp. 1-12.
1sBN: 978-1-4503-5970-2. por: 10 . 1145 /3290605 . 3300728. URL:
http://dl.acm.org/citation.cfm?doid=3290605. 3300728
(visited on 05/06/2020).

Yoshihiro Kawahara, Steve Hodges, Benjamin S. Cook, Cheng
Zhang, and Gregory D. Abowd. “Instant inkjet circuits: lab-based
inkjet printing to support rapid prototyping of UbiComp devices”.
In: Proceedings of the 2013 ACM international joint conference on Per-
vasive and ubiquitous computing. UbiComp "13. Zurich, Switzerland:
Association for Computing Machinery, Sept. 8, 2013, pp. 363—
372. 1sBN: 978-1-4503-1770-2. por: 10 . 1145 /2493432 . 2493486.
URL: https://doi.org/10.1145/2493432.2493486 (visited on
05/05/2020).

Majeed Kazemitabaar, Liang He, Katie Wang, Chloe Aloimonos,
Tony Cheng, and Jon E. Froehlich. “ReWear: Early Explorations
of a Modular Wearable Construction Kit for Young Children”. In:
Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. CHIEA "16. San Jose, California, USA:
Association for Computing Machinery, May 7, 2016, pp. 2072-
2080. 1sBN: 978-1-4503-4082-3. por: 10.1145/2851581.2892525.
URL: https://doi.org/10.1145/2851581.2892525 (visited on
05/06/2020).

Majeed Kazemitabaar, Jason McPeak, Alexander Jiao, Liang He,
Thomas Outing, and Jon E. Froehlich. “MakerWear: A Tangible
Approach to Interactive Wearable Creation for Children”. In: Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. CHI "17. Denver, Colorado, USA: Association for Comput-
ing Machinery, May 2, 2017, pp. 133-145. 1sBn: 978-1-4503-4655-9.
por: 10.1145/3025453.3025887. UrL: https://doi.org/10.114
5/3025453.3025887 (visited on 05/05/2020).

Rushil Khurana and Steve Hodges. “Beyond the Prototype: Under-
standing the Challenge of Scaling Hardware Device Production”.
In: Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. CHI "20. Honolulu, HI, USA: Association for
Computing Machinery, Apr. 21, 2020, pp. 1-11. 1sBN: 978-1-4503-
6708-0. por: 10.1145/3313831.3376761. URL: https://doi.org
/10.1145/3313831.3376761 (visited on 05/05/2020).

Yoonji Kim, Youngkyung Choi, Daye Kang, Minkyeong Lee, Tek-
Jin Nam, and Andrea Bianchi. “HeyTeddy: Conversational Test-
Driven Development for Physical Computing”. In: Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 3.4 (Sept. 2020). por:
10.1145/3369838. urL: https://doi.org/10.1145/3369838.
Yoonji Kim, Youngkyung Choi, Hyein Lee, Geehyuk Lee, and
Andrea Bianchi. “VirtualComponent: A Mixed-Reality Tool for

155

https://doi.org/10.1145/3290605.3300728
http://dl.acm.org/citation.cfm?doid=3290605.3300728
https://doi.org/10.1145/2493432.2493486
https://doi.org/10.1145/2493432.2493486
https://doi.org/10.1145/2851581.2892525
https://doi.org/10.1145/2851581.2892525
https://doi.org/10.1145/3025453.3025887
https://doi.org/10.1145/3025453.3025887
https://doi.org/10.1145/3025453.3025887
https://doi.org/10.1145/3313831.3376761
https://doi.org/10.1145/3313831.3376761
https://doi.org/10.1145/3313831.3376761
https://doi.org/10.1145/3369838
https://doi.org/10.1145/3369838

BIBLIOGRAPHY

[Kim, 2020b]

[Knorig, 2009]

[Lambrichts, 2021]

[Lambrichts, 2023]

[Lambrichts, 2020]

[Ledo, 2018]

[Lee, 2021]

Designing and Tuning Breadboarded Circuits”. In: Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems. CHI
"19. Glasgow, Scotland Uk: Association for Computing Machinery,
2019, pp. 1-13. 1sBN: 9781450359702. por: 10.1145/3290605.3300
407. urL: https://doi.org/10.1145/3290605.3300407.

Yoonji Kim, Hyein Lee, Ramkrishna Prasad, Seungwoo Je,
Youngkyung Choi, Daniel Ashbrook, Ian Oakley, and An-
drea Bianchi. “SchemaBoard: Supporting Correct Assembly
of Schematic Circuits Using Dynamic In-Situ Visualization”. In:
Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 987-998. 1sBN: 9781450375146.
URL: https://doi.org/10.1145/3379337.3415887.

André Knorig, Reto Wettach, and Jonathan Cohen. “Fritzing: a tool
for advancing electronic prototyping for designers”. In: Proceedings
of the 3rd International Conference on Tangible and Embedded Interaction
- TEI '09. the 3rd International Conference. Cambridge, United
Kingdom: ACM Press, 2009, p. 351. 1sBN: 978-1-60558-493-5. por:
10.1145/1517664.1517735. urL: http://portal.acm.org/cita
tion.cfm?doid=1517664.1517735 (visited on 05/06/2020).
Mannu Lambrichts, Raf Ramakers, Steve Hodges, Sven Coppers,
and James Devine. “A Survey and Taxonomy of Electronics Toolkits
for Interactive and Ubiquitous Device Prototyping”. In: Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 5.2 (June 2021). por:
10.1145/3463523. urL: https://doi.org/10.1145/3463523.
Mannu Lambrichts, Raf Ramakers, Steve Hodges, James Devine,
Lorraine Underwood, and Joe Finney. “CircuitGlue: A Software
Configurable Converter for Interconnecting Multiple Heteroge-
neous Electronic Components”. In: Proc. ACM Interact. Mob. Wear-
able Ubiquitous Technol. 7.2 (June 2023). por: 10.1145/3596265. URL:
https://doi.org/10.1145/3596265.

Mannu Lambrichts, Jose Maria Tijerina, and Raf Ramakers. “Soft-
Mod: A Soft Modular Plug-and-Play Kit for Prototyping Electronic
Systems”. In: Proceedings of the Fourteenth International Conference
on Tangible, Embedded, and Embodied Interaction. TEI '20. Sydney
NSW, Australia: Association for Computing Machinery, Feb. 9,
2020, pp. 287-298. 1sBN: 978-1-4503-6107-1. por: 10.1145/337492
0.3374950. urL: https://doi.org/10.1145/3374920.3374950
(visited on 05/05/2020).

David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt,
Lora Oehlberg, and Saul Greenberg. “Evaluation strategies for
HCT toolkit research”. In: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 2018, pp. 1-17.

Woojin Lee, Ramkrishna Prasad, Seungwoo Je, Yoonji Kim, Ian
Oakley, Daniel Ashbrook, and Andrea Bianchi. “VirtualWire: Sup-
porting Rapid Prototyping with Instant Reconfigurations of Wires
in Breadboarded Circuits”. In: Proceedings of the Fifteenth Interna-

156

https://doi.org/10.1145/3290605.3300407
https://doi.org/10.1145/3290605.3300407
https://doi.org/10.1145/3290605.3300407
https://doi.org/10.1145/3379337.3415887
https://doi.org/10.1145/1517664.1517735
http://portal.acm.org/citation.cfm?doid=1517664.1517735
http://portal.acm.org/citation.cfm?doid=1517664.1517735
https://doi.org/10.1145/3463523
https://doi.org/10.1145/3463523
https://doi.org/10.1145/3596265
https://doi.org/10.1145/3596265
https://doi.org/10.1145/3374920.3374950
https://doi.org/10.1145/3374920.3374950
https://doi.org/10.1145/3374920.3374950

ACADEMIC SOURCES

[Leen, 2017]

[Levis, 2005]

[McGrath, 2017]

[McGrath, 2018]

[Mellis, 2013]

[Mellis, 2016]

tional Conference on Tangible, Embedded, and Embodied Interaction. TEI
"21. Salzburg, Austria: Association for Computing Machinery, 2021,
pp- 1-12. 1sBN: 9781450382137. por: 10.1145/3430524 . 3440623.
URL: https://doi.org/10.1145/3430524.3440623.

Danny Leen, Raf Ramakers, and Kris Luyten. “StrutModeling: A
Low-Fidelity Construction Kit to Iteratively Model, Test, and Adapt
3D Objects”. In: Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology. UIST "17. Québec City,
QC, Canada: Association for Computing Machinery, Oct. 20, 2017,
pp- 471-479. 1sBN: 978-1-4503-4981-9. por: 10.1145/3126594.3126
643. URL: https://doi.org/10.1145/3126594.3126643 (visited
on 05/05/2020).

Philip Levis, Samuel Madden, Joseph Polastre, Robert Szewczyk,
Kamin Whitehouse, Alec Woo, David Gay, Jason Hill, Matt Welsh,
Eric Brewer, and David Culler. “TinyOS: An Operating System
for Sensor Networks”. In: vol. 00. New York: Springer-Verlag, Jan.
2005, pp. 115-148. 1sBN: 978-3-540-23867-6. por: 10.1007/3-540-2
7139-2_7.

Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar,
Mitchell Karchemsky, David Mellis, and Bjérn Hartmann. “BifroSt:
Visualizing and Checking Behavior of Embedded Systems across
Hardware and Software”. In: Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology. UIST "17.
Québec City, QC, Canada: Association for Computing Machinery,
2017, pp. 299-310. 1sBN: 9781450349819. por: 10.1145/3126594.31
26658. URL: https://doi.org/10.1145/3126594.3126658.
William McGrath, Jeremy Warner, Mitchell Karchemsky, Andrew
Head, Daniel Drew, and Bjoern Hartmann. “WiFroSt: Bridging
the Information Gap for Debugging of Networked Embedded
Systems”. In: Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology. UIST “18. Berlin, Germany:
Association for Computing Machinery, 2018, pp. 447-455. 1sBN:
9781450359481. por: 10.1145/3242587.3242668. URL: https://d
0i.org/10.1145/3242587.3242668.

David A Mellis, Sam Jacoby, Leah Buechley, Hannah Perner-Wilson,
and Jie Qi. “Microcontrollers as material: crafting circuits with pa-
per, conductive ink, electronic components, and an" untoolkit"”. In:
Proceedings of the 7th International Conference on Tangible, Embedded
and Embodied Interaction. 2013, pp. 83-90.

David A. Mellis, Leah Buechley, Mitchel Resnick, and Bjérn Hart-
mann. “Engaging Amateurs in the Design, Fabrication, and As-
sembly of Electronic Devices”. In: Proceedings of the 2016 ACM
Conference on Designing Interactive Systems. DIS "16. Brisbane, QLD,
Australia: Association for Computing Machinery, 2016, pp. 1270-
1281. 1sBN: 9781450340311. por: 10.1145/2901790.2901833. URL:
https://doi.org/10.1145/2901790.2901833.

157

https://doi.org/10.1145/3430524.3440623
https://doi.org/10.1145/3430524.3440623
https://doi.org/10.1145/3126594.3126643
https://doi.org/10.1145/3126594.3126643
https://doi.org/10.1145/3126594.3126643
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/3242587.3242668
https://doi.org/10.1145/3242587.3242668
https://doi.org/10.1145/3242587.3242668
https://doi.org/10.1145/2901790.2901833
https://doi.org/10.1145/2901790.2901833

BIBLIOGRAPHY

[Merrill, 2012]

[Mi, 2017]

[Myers, 2000]

[Nagels, 2018]

[Narumi, 2015]

[Olsen, 2007]

[Perteneder, 2020]

David Merrill, Emily Sun, and Jeevan Kalanithi. “Sifteo cubes”. In:
CHI "12 Extended Abstracts on Human Factors in Computing Systems.
CHI EA ’"12. Austin, Texas, USA: Association for Computing
Machinery, May 5, 2012, pp. 1015-1018. 1sBN: 978-1-4503-1016-1.
por: 10.1145/2212776.2212374. urL: https://doi.org/10.114
5/2212776.2212374 (visited on 05/05/2020).

Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang.
“ An empirical characterization of IFTTT: ecosystem, usage, and
performance”. In: Proceedings of the 2017 Internet Measurement
Conference. IMC "17: Internet Measurement Conference. London
United Kingdom: ACM, Nov. 2017, pp. 398—404. 1sBn: 978-1-4503-
5118-8. por: 10.1145/3131365.3131369. urL: https://dl.acm.o
rg/doi/10.1145/3131365.3131369 (visited on 05/06/2020).
Brad Myers, Scott E. Hudson, and Randy Pausch. “Past, present,
and future of user interface software tools”. In: ACM Trans. Comput.-
Hum. Interact. 7.1 (Mar. 2000), pp. 3-28. 1ssnx: 1073-0516. por: 10.11
45/344949.344959. urL: https://doi.org/10.1145/344949.34
4959.

Steven Nagels, Raf Ramakers, Kris Luyten, and Wim Deferme.
“Silicone Devices: A Scalable DIY Approach for Fabricating Self-
Contained Multi-Layered Soft Circuits using Microfluidics”. In:
Proceedings of the 2018 CHI Conference on Human Factors in Com-
puting Systems. CHI "18. Montreal QC, Canada: Association for
Computing Machinery, Apr. 19, 2018, pp. 1-13. 1sBN: 978-1-4503-
5620-6. por: 10.1145/3173574.3173762. URL: https://doi.org
/10.1145/3173574.3173762 (visited on 05/05/2020).

Koya Narumi, Steve Hodges, and Yoshihiro Kawahara. “Conduc-
tAR: an augmented reality based tool for iterative design of con-
ductive ink circuits”. In: Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing. UbiComp
"15. Osaka, Japan: Association for Computing Machinery, Sept. 7,
2015, pp. 791-800. 1sBN: 978-1-4503-3574-4. por: 10.1145/275085
8.2804267. urL: https://doi.org/10.1145/2750858.2804267
(visited on 05/06/2020).

Dan R. Olsen. “Evaluating user interface systems research”. In:
Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology. UIST '07. Newport, Rhode Island, USA:
Association for Computing Machinery, 2007, pp. 251-258. 1sBN:
9781595936790. por: 10.1145/1294211.1294256. urL: https://d
0i.org/10.1145/1294211.1294256.

Florian Perteneder, Kathrin Probst, Joanne Leong, Sebastian
Gassler, Christian Rendl, Patrick Parzer, Katharina Fluch, Sophie
Gahleitner, Sean Follmer, Hideki Koike, and Michael Haller.
“Foxels: Build Your Own Smart Furniture”. In: Proceedings of
the Fourteenth International Conference on Tangible, Embedded, and
Embodied Interaction. TEI '20. Sydney NSW, Australia: Asso-
ciation for Computing Machinery, Feb. 9, 2020, pp. 111-122.

158

https://doi.org/10.1145/2212776.2212374
https://doi.org/10.1145/2212776.2212374
https://doi.org/10.1145/2212776.2212374
https://doi.org/10.1145/3131365.3131369
https://dl.acm.org/doi/10.1145/3131365.3131369
https://dl.acm.org/doi/10.1145/3131365.3131369
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/3173574.3173762
https://doi.org/10.1145/3173574.3173762
https://doi.org/10.1145/3173574.3173762
https://doi.org/10.1145/2750858.2804267
https://doi.org/10.1145/2750858.2804267
https://doi.org/10.1145/2750858.2804267
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256

ACADEMIC SOURCES

[Ramakers, 2015]

[Read, 2023]

[Resnick, 2005]

[Savage, 2015]

[Schweikardt, 2006]

[Scott, 2011]

[Seneviratne, 2017]

1sBN: 978-1-4503-6107-1. por: 10 . 1145 /3374920 . 3374935. URL:
https://doi.org/10 . 1145 /3374920 . 3374935 (visited on
05/05/2020).

Raf Ramakers, Kashyap Todi, and Kris Luyten. “PaperPulse: An
Integrated Approach to Fabricating Interactive Paper”. In: Pro-
ceedings of the 33rd Annual ACM Conference Extended Abstracts on
Human Factors in Computing Systems. CHI EA "15. Seoul, Republic
of Korea: Association for Computing Machinery, 2015, pp. 267-
270. 1sBN: 9781450331463. por: 10.1145/2702613.2725430. URL:
https://doi.org/10.1145/2702613.2725430.

Jake Robert Read, Leo Mcelroy, Quentin Bolsee, B Smith, and Neil
Gershenfeld. “Modular-Things: Plug-and-Play with Virtualized
Hardware”. In: Extended Abstracts of the 2023 CHI Conference on Hu-
man Factors in Computing Systems. CHI EA "23. Hamburg, Germany:
Association for Computing Machinery, 2023. 1sBN: 9781450394222.
por: 10.1145/3544549.3585642. urL: https://doi.org/10.114
5/3544549.3585642.

Mitchel Resnick and Brian Silverman. “Some reflections on design-
ing construction kits for kids”. In: Proceedings of the 2005 conference
on Interaction design and children. 2005, pp. 117-122.

Valkyrie Savage, Sean Follmer, Jingyi Li, and Bjérn Hartmann.
“Makers’ Marks: Physical Markup for Designing and Fabricating
Functional Objects”. In: Proceedings of the 28th Annual ACM Sympo-
sium on User Interface Software & Technology. UIST “15. Charlotte,
NC, USA: Association for Computing Machinery, Nov. 5, 2015,
pp. 103-108. 1sBN: 978-1-4503-3779-3. por: 10.1145/2807442.2807
508. urL: https://doi.org/10.1145/2807442.2807508 (visited
on 05/05/2020).

Eric Schweikardt and Mark D. Gross. “roBlocks: a robotic construc-
tion kit for mathematics and science education”. In: Proceedings
of the 8th international conference on Multimodal interfaces. ICMI "06.
Banff, Alberta, Canada: Association for Computing Machinery,
Now. 2, 2006, pp. 72-75. 1sBN: 978-1-59593-541-0. por: 10.1145/118
0995.1181010. urL: https://doi.org/10.1145/1180995.11810
10 (visited on 05/06/2020).

James Scott, A.]. Bernheim Brush, John Krumm, Brian Meyers,
Michael Hazas, Stephen Hodges, and Nicolas Villar. “PreHeat: con-
trolling home heating using occupancy prediction”. In: Proceedings
of the 13th international conference on Ubiquitous computing. UbiComp
"11. Beijing, China: Association for Computing Machinery, Sept. 17,
2011, pp. 281-290. 1sBN: 978-1-4503-0630-0. por: 10.1145/203011
2.2030151. urL: https://doi.org/10.1145/2030112.2030151
(visited on 05/06/2020).

Suranga Seneviratne, Yining Hu, Tham Nguyen, Guohao Lan, Sara
Khalifa, Kanchana Thilakarathna, Mahbub Hassan, and Aruna
Seneviratne. “A Survey of Wearable Devices and Challenges”.
In: IEEE Communications Surveys and Tutorials 19.4 (July 2017),

159

https://doi.org/10.1145/3374920.3374935
https://doi.org/10.1145/3374920.3374935
https://doi.org/10.1145/2702613.2725430
https://doi.org/10.1145/2702613.2725430
https://doi.org/10.1145/3544549.3585642
https://doi.org/10.1145/3544549.3585642
https://doi.org/10.1145/3544549.3585642
https://doi.org/10.1145/2807442.2807508
https://doi.org/10.1145/2807442.2807508
https://doi.org/10.1145/2807442.2807508
https://doi.org/10.1145/1180995.1181010
https://doi.org/10.1145/1180995.1181010
https://doi.org/10.1145/1180995.1181010
https://doi.org/10.1145/1180995.1181010
https://doi.org/10.1145/2030112.2030151
https://doi.org/10.1145/2030112.2030151
https://doi.org/10.1145/2030112.2030151

BIBLIOGRAPHY

[Shneiderman, 2006]

[Silva, 2014]

[Strasnick, 2017]

[Swierczynski, 2014]

[Wang, 2016]

[Weigel, 2015]

pp- 2573-2620. 1ssn: 1553-877X. por: 10.1109/COMST.2017.27319
79.

Ben Shneiderman, Gerhard Fischer, Mary Czerwinski, Mitch
Resnick, Brad Myers, Linda Candy, Ernest Edmonds, Mike Eisen-
berg, Elisa Giaccardi, Tom Hewett, Pamela Jennings, Bill Kules,
Kumiyo Nakakoji, Jay Nunamaker, Randy Pausch, Ted Selker,
Elisabeth Sylvan, and Michael Terry. “Creativity Support Tools:
Report From a U.S. National Science Foundation Sponsored Work-
shop”. In: International Journal of Human—Computer Interaction 20.2
(2006), pp. 61-77. por: 10.1207 /5153275901 jhc2002_1. eprint:
https://doi.org/10.1207/s153275901jhc2002_1. urL: https:
//doi.org/10.1207/s15327590ijhc2002_1.

Hugo Placido da Silva, Ana Fred, and Raul Martins. “Biosignals for
Everyone”. In: IEEE Pervasive Computing 13.4 (Oct. 2014), pp. 64-71.
1ssN: 1536-1268. por: 10.1109/MPRV.2014.61. URL: http://ieeex
plore.ieee.org/document/6926682/ (visited on 05/06/2020).
Evan Strasnick, Maneesh Agrawala, and Sean Follmer. “Scanalog;:
Interactive Design and Debugging of Analog Circuits with Pro-
grammable Hardware”. In: Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology. UIST "17.
Québec City, QC, Canada: Association for Computing Machinery,
2017, pp. 321-330. 1sBN: 9781450349819. por: 10.1145/3126594.31
26618. URL: https://doi.org/10.1145/3126594.3126618.

R. Swierczynski, K. Urbariski, and A. Wymystowski. “Methodology
for supporting electronic system prototyping through semiauto-
matic component selection”. In: 2014 15th International Conference
on Thermal, Mechanical and Multi-Physics Simulation and Experiments
in Microelectronics and Microsystems (EuroSimE). New York, NY,
USA: Institute of Electrical and Electronics Engineers, 2014, pp. 1-4.
por: 10.1109/EuroSimE.2014.6813792.

Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen Wu, Hsin-
Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung, and Mike Y. Chen.
“CircuitStack: Supporting Rapid Prototyping and Evolution of
Electronic Circuits”. In: Proceedings of the 29th Annual Symposium
on User Interface Software and Technology. UIST "16. Tokyo, Japan:
Association for Computing Machinery, 2016, pp. 687-695. 1sBN:
9781450341899. por: 10.1145/2984511.2984527. urL: https://d
0i.org/10.1145/2984511.2984527.

Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta, Carmel Ma-
jidi, and Jurgen Steimle. “iSkin: Flexible, Stretchable and Visually
Customizable On-Body Touch Sensors for Mobile Computing”. In:
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems. CHI "15. Seoul, Republic of Korea: Association
for Computing Machinery, Apr. 18, 2015, pp. 2991-3000. 1sBN:
978-1-4503-3145-6. por: 10.1145/2702123.2702391. UuRrL: https:
//doi.org/10.1145/2702123.2702391 (visited on 05/05/2020).

160

https://doi.org/10.1109/COMST.2017.2731979
https://doi.org/10.1109/COMST.2017.2731979
https://doi.org/10.1207/s15327590ijhc2002_1
https://doi.org/10.1207/s15327590ijhc2002_1
https://doi.org/10.1207/s15327590ijhc2002_1
https://doi.org/10.1207/s15327590ijhc2002_1
https://doi.org/10.1109/MPRV.2014.61
http://ieeexplore.ieee.org/document/6926682/
http://ieeexplore.ieee.org/document/6926682/
https://doi.org/10.1145/3126594.3126618
https://doi.org/10.1145/3126594.3126618
https://doi.org/10.1145/3126594.3126618
https://doi.org/10.1109/EuroSimE.2014.6813792
https://doi.org/10.1145/2984511.2984527
https://doi.org/10.1145/2984511.2984527
https://doi.org/10.1145/2984511.2984527
https://doi.org/10.1145/2702123.2702391
https://doi.org/10.1145/2702123.2702391
https://doi.org/10.1145/2702123.2702391

ONLINE SOURCES

[Wu, 2019]

[Wu, 2017]

Online Sources

[Adafruit, 2021a]
[Adafruit, 2021b]
[Adafruit, 2021c]
[Adafruit, 2021d]
[Adafruit, 2022]
[Adafruit, 2024]

[Alchitry, 2021]
[Anadigm, 2022]

[Arduino, 2021]

[Arduino, 2022]
[Arduino, 2024a]

[Arduino, 2024b]
[Autodesk, 2021]
[BeagleBone, 2021]

[Bitalino, 2021]

Te-Yen Wu, Jun Gong, Teddy Seyed, and Xing-Dong Yang. “Proxino:
Enabling Prototyping of Virtual Circuits with Physical Proxies”.
In: Proceedings of the 32nd Annual ACM Symposium on User Inter-
face Software and Technology. UIST "19. New Orleans, LA, USA:
Association for Computing Machinery, 2019, pp. 121-132. 1sBN:
9781450368162. por: 10.1145/3332165.3347938. UrRL: https://d
0i.org/10.1145/3332165.3347938.

Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung
Ku, Ming-Wei Hsu, Jun-You Liu, Yu-Chih Lin, and Mike Y. Chen.
“CurrentViz: Sensing and Visualizing Electric Current Flows of
Breadboarded Circuits”. In: Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology. UIST "17.
Québec City, QC, Canada: Association for Computing Machinery,
2017, pp. 343-349. 1sBn: 9781450349819. por: 10.1145/3126594.31
26646. URL: https://doi.org/10.1145/3126594.3126646

Adafruit. Adafruit 12-Key Capacitive Touch Sensor Breakout - MPR121.
2021. urL: https://www.adafruit.com/product/1982.

Adafruit. Adafruit Industries, Unique & fun DIY electronics and kits.
2021. urL: https://www.adafruit.com/.

Adafruit. Arduino Playground: Arduino-Compatible Hardware. 2021.
URL: https://playground. arduino.cc/Main/SimilarBoards.
Adafruit. What is STEMMA? 2021. urL: https://learn.adafrui
t.com/introducing-adafruit-stemma-qt.

Adafruit. Adafruit 9-DOF Absolute Orientation IMU Fusion Breakout -
BNOO055. 2022. urL: https://www.adafruit.com/product/2472.
Adafruit. Circuit Playground Express. 2024. urL: https://www.ada
fruit.com/product/3333.

Alchitry. Alchitry homepage. 2021. urL: https://alchitry.com/.
Anadigm. Anadigm FPAA. 2022. urL: https://www.anadigm. com
/fpaa.asp.

Arduino. Arduino MKR Vidor 4000 product page. 2021. URL: https:
//store.arduino.cc/arduino-mkr-vidor-4000.

Arduino. Arduino - Home. 2022. urL: https://www.arduino.cc/.
Arduino. Arduino - Libraries. 2024. urL: https://www.arduino.cc
/reference/en/libraries/.

Arduino. Arduino IDE. 2024. urL: https://www.arduino.cc/en
/software.

Autodesk. Autodesk Eagle: PCB design made easy for every engineer.
2021. urL: https://www.autodesk.com/products/eagle.
BeagleBone. BeagleBoard - community supported open hardware com-
puters for making. 2021. urL: https://beagleboard.org/.
Bitalino. BITalino - Biomedical Equipment | Low-Cost Toolkit. 2021.
URL: https://bitalino.com/.

161

https://doi.org/10.1145/3332165.3347938
https://doi.org/10.1145/3332165.3347938
https://doi.org/10.1145/3332165.3347938
https://doi.org/10.1145/3126594.3126646
https://doi.org/10.1145/3126594.3126646
https://doi.org/10.1145/3126594.3126646
https://www.adafruit.com/product/1982
https://www.adafruit.com/
https://playground.arduino.cc/Main/SimilarBoards
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/product/2472
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://alchitry.com/
https://www.anadigm.com/fpaa.asp
https://www.anadigm.com/fpaa.asp
https://store.arduino.cc/arduino-mkr-vidor-4000
https://store.arduino.cc/arduino-mkr-vidor-4000
https://www.arduino.cc/
https://www.arduino.cc/reference/en/libraries/
https://www.arduino.cc/reference/en/libraries/
https://www.arduino.cc/en/software
https://www.arduino.cc/en/software
https://www.autodesk.com/products/eagle
https://beagleboard.org/
https://bitalino.com/

BIBLIOGRAPHY

[Burgess, 2024]

[Circuito, 2022]
[Circuits, 2021]

[Coral, 2021]
[Cubelets, 2021]

[Cubetto, 2021]

[DeltaMaker, 2021]

[Edison, 2024]

[ESLOV, 2021]

[Espressif, 2021]

[Espressif, 2022a]

[Espressif, 2022b]
[FreeRTOS, 2024]
[Fritzing, 2021]
[Geppetto, 2021]
[Grove, 2021]

[Infineon, 2022]

[Kamps, 2021]

[Labs, 2021]

Phillip Burgess. Adafruit GFX Graphics Library. 2024. UrRL: https:
//learn.adafruit.com/adafruit-gfx-graphics-1library/ov
erview.

Circuito. Design Your Circuit with Circuito.io. 2022. urL: https://w
ww.circuito.io/.

Snap Circuits. Educational STEM Toys: Snap Circuits. 2021. UrL:
https://www.elenco.com/.

Coral. Coral homepage. 2021. urL: https://coral.ai/.

Cubelets. Modular Robotics Cubelets robot blocks. 2021. urL: https:
//www.modrobotics.com/.

Cubetto. Meet Cubetto - Primo Toys Cubetto: A toy robot teaching kids
code & computer programming. 2021. urL: https://www.primotoys
.com/.

DeltaMaker. DeltaMaker: An Elegant 3D Printer. 2021. urL: https:
//www.deltamaker.com/.

Intel Edison. Intel Edison Compute Module. 2024. urL: https://ark
.intel.com/content/www/us/en/ark/products/84572/intel -
edison-compute-module-iot.html.

ESLOV. ESLOV IoT Invention Kit (Canceled). 2021. urL: https://ww
w.kickstarter.com/projects/iot-invention-kit/eslov-io
t-invention-kit.

Espressif. Espressif offers a wide range of fully-certified Wi-Fi & Blue-
tooth modules powered by our own advanced SoCs. 2021. urL: https:
//www.espressif.com/en/products/modules.

Espressif. A cost-effective and highly integrated Wi-Fi MCU for IoT
applications. 2022. urL: https://www.espressif.com/en/produc
ts/socs/esp8266.

Espressif. ESP32. 2022. urL: https://www.espressif.com/en/pr
oducts/socs/esp32.

FreeRTOS. FreeRTOS: Real-time operating system for microcontrollers.
2024. urL: https://www. freertos.org/index.html.

Fritzing. Fritzing. 2021. urL: http://fritzing.org/.

Geppetto. Welcome to Geppetto. 2021. URL: https://geppetto.gum
stix.com/.

Grove. Grove Beginner Kit for Arduino(EOL) - Seeed Wiki. 2021. UrL:
https://wiki.seeedstudio.com/Grove_Beginner_Kit_for_Ar
duino/.

Infineon. 32-bit PSoC™ Arm® Cortex® Microcontroller. 2022. URL:
https://www.infineon.com/cms/en/product/microcontrolle
r/32-bit-psoc-arm-cortex-microcontroller/.

H. J. Kamps. Hardware is Hard: Getting a Kickstarter project out the
door. 2021. urL: https://medium. com/triggertrap-playbook/h
ardware-is-hard-getting-a-kickstarter-project-shipped

-59¢9596bdd7f£.

SAM Labs. SAM Labs homepage. 2021. UrL: https://samlabs.com
/us/.

162

https://learn.adafruit.com/adafruit-gfx-graphics-library/overview
https://learn.adafruit.com/adafruit-gfx-graphics-library/overview
https://learn.adafruit.com/adafruit-gfx-graphics-library/overview
https://www.circuito.io/
https://www.circuito.io/
https://www.elenco.com/
https://coral.ai/
https://www.modrobotics.com/
https://www.modrobotics.com/
https://www.primotoys.com/
https://www.primotoys.com/
https://www.deltamaker.com/
https://www.deltamaker.com/
https://ark.intel.com/content/www/us/en/ark/products/84572/intel-edison-compute-module-iot.html
https://ark.intel.com/content/www/us/en/ark/products/84572/intel-edison-compute-module-iot.html
https://ark.intel.com/content/www/us/en/ark/products/84572/intel-edison-compute-module-iot.html
https://www.kickstarter.com/projects/iot-invention-kit/eslov-iot-invention-kit
https://www.kickstarter.com/projects/iot-invention-kit/eslov-iot-invention-kit
https://www.kickstarter.com/projects/iot-invention-kit/eslov-iot-invention-kit
https://www.espressif.com/en/products/modules
https://www.espressif.com/en/products/modules
https://www.espressif.com/en/products/socs/esp8266
https://www.espressif.com/en/products/socs/esp8266
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://www.freertos.org/index.html
http://fritzing.org/
https://geppetto.gumstix.com/
https://geppetto.gumstix.com/
https://wiki.seeedstudio.com/Grove_Beginner_Kit_for_Arduino/
https://wiki.seeedstudio.com/Grove_Beginner_Kit_for_Arduino/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/
https://medium.com/triggertrap-playbook/hardware-is-hard-getting-a-kickstarter-project-shipped-59c9596bdd7f
https://medium.com/triggertrap-playbook/hardware-is-hard-getting-a-kickstarter-project-shipped-59c9596bdd7f
https://medium.com/triggertrap-playbook/hardware-is-hard-getting-a-kickstarter-project-shipped-59c9596bdd7f
https://samlabs.com/us/
https://samlabs.com/us/

ONLINE SOURCES

[Launchpad, 2021]

[Lego, 2022]
[LLVM, 2024]
[Loxone, 2021]

[MakeCode, 2024]

[MakeMagazine, 2021]

[Mbed, 2024]
[mBot, 2021]

[microbit, 2022]
[Microsoft, 2024a]
[Microsoft, 2024b]
[Mikroe, 2021]
[Niko, 2021]
[Node-RED, 2024]
[OASIS, 2024a]
[OASIS, 2024b]
[Pi, 2021]

[Pi, 2022a]

[Pi, 2022b]

[Pi, 2022¢]

[Piper, 2021]

[PlatformIO, 2024]
[Pmod, 2021]

TI Launchpad. Hardware Kits & Boards Design Resources. 2021. URL:
http://www.ti.com/design-resources/embedded-developme
nt/hardware-kits-boards.html.

Lego. Lego Mindstoms EV3. 2022. urL: https://www.lego.com/en

-us/product/lego-mindstorms-ev3-31313.

LLVM. The LLVM Compiler Infrastructure. 2024. urL: https://11lvm
.org/.

Loxone. Loxone Smart Home & Commercial Projects Create Automation.
2021. urL: https://www.loxone.com/enus/.

MakeCode. Microsoft MakeCode for micro:bit. 2024. urL: https://m
akecode.microbit.org/.

MakeMagazine. Makers” Guide to Boards. 2021. urL: https://make
zine.com/comparison/boards/.

Mbed. Mbed OS. 2024. urL: https://os.mbed.com/mbed-os/.
mBot. Makeblock mBot Entry-level Educational Robot Kit. 2021. URL:
https://www.makeblock.com/mbot.

BBC micro:bit. Micro:bit Educational Foundation. 2022. UrRL: https:
//microbit.org/.

Microsoft. DeviceScript TypeScript for Tiny IoI' Devices. 2024. URL:
https://microsoft.github.io/devicescript/.

Microsoft. Visual Studio Code. 2024. urL: https://code.visualst
udio.com/.

Mikroe. Mikroelektronika Click Boards. 2021. urL: http: //www.mikr
oe.com/click.

Niko. Niko Home Control. 2021. urL: https://www.niko.eu/en/pr
oducts/niko-home-control.

Node-RED. Node-RED - Low-code programming for event-driven
applications. 2024. urL: https://nodered.org/.

OASIS. CoAP - Constrained Application Protocol. 2024. URL: https:
//coap.space/.

OASIS. MQTT. 2024. urL: https://docs.oasis-open.org/mqtt
/mqtt/v5.0/mqtt-v5.0.html.

Raspberry Pi. Compute Module 3+. 2021. urL: https://www.raspb
errypi.org/products/compute-module-3-plus/.

Raspberry Pi. RP2040. 2022. urL: https://www.raspberrypi.com
/products/rp2040/.

Raspberry Pi. Teach, Learn, and Make with Raspberry Pi. 2022. urL:
https://www.raspberrypi.org/.

Raspberry Pi. What is PIO? 2022. urL: https://www.raspberrypi
.com/news/what-is-pio/.

Piper. Piper Computer Kit. 2021. urL: https://www.playpiper.co
m/.

PlatformlIO. PlatformIO. 2024. urL: https://platformio.org/.
Pmod. Digilent Pmod Modules and Connectors - Interface with Devel-
opment Boards. 2021. urL: https://store.digilentinc. com/pmo
d-modules-connectors/.

163

http://www.ti.com/design-resources/embedded-development/hardware-kits-boards.html
http://www.ti.com/design-resources/embedded-development/hardware-kits-boards.html
https://www.lego.com/en-us/product/lego-mindstorms-ev3-31313
https://www.lego.com/en-us/product/lego-mindstorms-ev3-31313
https://llvm.org/
https://llvm.org/
https://www.loxone.com/enus/
https://makecode.microbit.org/
https://makecode.microbit.org/
https://makezine.com/comparison/boards/
https://makezine.com/comparison/boards/
https://os.mbed.com/mbed-os/
https://www.makeblock.com/mbot
https://microbit.org/
https://microbit.org/
https://microsoft.github.io/devicescript/
https://code.visualstudio.com/
https://code.visualstudio.com/
http://www.mikroe.com/click
http://www.mikroe.com/click
https://www.niko.eu/en/products/niko-home-control
https://www.niko.eu/en/products/niko-home-control
https://nodered.org/
https://coap.space/
https://coap.space/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.raspberrypi.org/products/compute-module-3-plus/
https://www.raspberrypi.org/products/compute-module-3-plus/
https://www.raspberrypi.com/products/rp2040/
https://www.raspberrypi.com/products/rp2040/
https://www.raspberrypi.org/
https://www.raspberrypi.com/news/what-is-pio/
https://www.raspberrypi.com/news/what-is-pio/
https://www.playpiper.com/
https://www.playpiper.com/
https://platformio.org/
https://store.digilentinc.com/pmod-modules-connectors/
https://store.digilentinc.com/pmod-modules-connectors/

BIBLIOGRAPHY

[Romano, 2022]
[ROS, 2024]

[Semiconductor, 2021]

[Semiconductor, 2022a]

[Semiconductor, 2022b]

[SparkFun, 2021a]

[SparkFun, 2021b]

[Sphero, 2021]

[STMicroelectronics, 2021]

[Studio, 2021]
[Teensy, 2021]

[Zephyr, 2024a]

[Zephyr, 2024b]

David Romano. A Brief History of FPGA. 2022. UrL: https://make
zine.com/2019/10/11/a-brief-history-of-fpga/.

ROS. ROS - Robot Operating System. 2024. URL: https://www.ros
.org/.

Nordic Semiconductor. Bluetooth Low Energy, Bluetooth mesh, NFC,
Thread and Zigbee development kit for the nRF52840 SoC. 2021. URL:
https://www.nordicsemi.com/Software-and-Tools/Develop
ment-Kits/nRF52840-DK.

Nordic Semiconductor. nRF52 Series. 2022. urL: https://infoce
nter.nordicsemi.com/index.jsp?topic=%5C%2Fstruct_nrf52
%5C¥%2Fstruct%5C%2Fnr£52 . html.

Nordic Semiconductor. PPI — Programmable peripheral interconnect.
2022. urL: https://infocenter.nordicsemi.com/index. jsp?t
opic=%5C%2Fcom.nordic.infocenter.nrf52832.ps.v1l. 1%5C%2
Fppi.html.

SparkFun. Prototyping with I12C has never been easier. 2021. URL:
https://www.sparkfun.com/qwiic.

SparkFun. SparkFun Electronics. 2021. UrRL: https://www.sparkfu
n.com/.

Sphero. STEM Kits & Robotics for Kids Inspire STEM Education with
Sphero. 2021. urL: https://sphero.com/.

STMicroelectronics. STMicroelectronics STM32 Discovery Kits. 2021.
URL: https://www.st.com/en/evaluation-tools/stm32-disco
very-kits.html.

Seeed Studio. Seeed Studio - Seeed Studio. 2021. urL: https://www
.seeedstudio.com/.

Teensy. Teensy USB Development Board. 2021. urL: https://www.p
jrc.com/teensy/.

Zephyr. Device Driver Model. 2024. urL: https://developer.nord
icsemi.com/nRF_Connect_SDK/doc/latest/zephyr/kernel/dr
ivers/index.html.

Zephyr. Zephyr. 2024. urL: https://developer.nordicsemi. com
/nRF_Connect_SDK/doc/latest/zephyr/index.html.

164

https://makezine.com/2019/10/11/a-brief-history-of-fpga/
https://makezine.com/2019/10/11/a-brief-history-of-fpga/
https://www.ros.org/
https://www.ros.org/
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK
https://infocenter.nordicsemi.com/index.jsp?topic=%5C%2Fstruct_nrf52%5C%2Fstruct%5C%2Fnrf52.html
https://infocenter.nordicsemi.com/index.jsp?topic=%5C%2Fstruct_nrf52%5C%2Fstruct%5C%2Fnrf52.html
https://infocenter.nordicsemi.com/index.jsp?topic=%5C%2Fstruct_nrf52%5C%2Fstruct%5C%2Fnrf52.html
https://infocenter.nordicsemi.com/index.jsp?topic=%5C%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%5C%2Fppi.html
https://infocenter.nordicsemi.com/index.jsp?topic=%5C%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%5C%2Fppi.html
https://infocenter.nordicsemi.com/index.jsp?topic=%5C%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%5C%2Fppi.html
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/
https://www.sparkfun.com/
https://sphero.com/
https://www.st.com/en/evaluation-tools/stm32-discovery-kits.html
https://www.st.com/en/evaluation-tools/stm32-discovery-kits.html
https://www.seeedstudio.com/
https://www.seeedstudio.com/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/kernel/drivers/index.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/kernel/drivers/index.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/kernel/drivers/index.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/index.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/index.html

APPENDICES

A

TooLkiT CLASSIFICATION

A.1 Holistic Characteristics

172

A.1. HOLISTIC CHARACTERISTICS

low

easy

easy

M5Stack Particle e-textile construction kit Raspberry Pi Arduino Electronic Blocks Project Bloks
Generic breakout boards Feather micro:bit BeagleBone Quilt Snaps Cubelets
Silicon vendor dev boards Low-cost WiFi modules BITalino 1/0 Stickers Lilypad Gadgeteer SoftMod MakerWear littleBits SAM Labs modules
on
Expertise in electronics) .
M5Stack e-textile construction kit Arduino. Raspberry Pi BeagleBone Quilt Snaps 1/0 Stickers
Particle DMItoolkit Feather Lilypad Lego Mindstorms Gadgeteer SoftMod Makerwear Project Bloks Cubelets
Silicon vendor dev boards Low-cost WiFi modules BITalino SAM Labs modules micro:bit Generic breakout boards Electronic Blocks _littleBits
[hign ¢ . . .
Expertise in programming
1/0 Stickers BeagleBone Arduino Feather Project Bloks
Lilypad Particle micro:bit Raspberry Pi Quilt Snaps
etextile construction kit~ MSStack Low-costWiFimodules Generic breakout boards DMItoolkit . Ejectronic Blocks SAM Labs modules
| hara | -] [B}
Ease OWU\ONOD\bm construction Silicon vendor dev boards Lego Mindstorms ~ Gadgeteer SoftMod
BITalino MSStack Silicon vendor dev boards Cubelets littleBits
Project Bloks 1/0 Stickers Lego Mindstorms micro:bit Feather Gadgeteer MakerWear | ow.cost WiFi modules
littleBits Electronic Blocks Cubelets e-textile construction kit Particle BITalino Arduino
| hara | [] -]] -
Ease of moving from prototype to product softMod Quilt Snaps Raspberry Pi BeagleBone
DMItoolkit MakerWear Generic breakout boards
SAM Labs modules Lilypad

Prototyping platforms ranked according to four holistic characteristics, with ‘better’ on the

Figure A.1

right. Not all platforms can be named due to space constraints, but the shading indicates the distribution

of all 56 platforms from this study across each characteristic. Note that rankings are all relative to the

dataset.

173

B

LocicGLUE DRIVER SPECIFICATION

B.1 Instructions

Instruction Description Parameters
OP_NOP No operation No parameters
OP_BOOT Marks the start of the boot No parameters

OP_FUNCTION

OP_PROPERTY

OP_PROPERTY_CONST

OP_DEFINE_INPUT_FORMAT

OP_DEFINE_OUTPUT_FORMAT

OP_DEFINE_FUNCTION_TYPE

OP_SET_VAR

OP_SET_VAR_INITIAL

OP_SET_ARG

OP_SET_PROP

OP_SET_LOCAL

OP_SET_PARAM

section

Define a function with argu-
ments and properties

Define a property for the cur-
rent function

Define a constant property
for the current function
Define the format and scale
of input parameters

Define the format and scale
of output parameters

Define the type of the func-
tion, defaults to the default
function

Save value in a variable

Save value in a variable only
if the variable is not set

Save value in argument at
specified index

Save value in the current
property

Save value in a local variable,
valid for the current context
Save value in a parameter ref-
erencing a variable outside
the current context

174

name:8, args:8,
props:8

name:8, n:8, ac-
cepts:8[n]

name:8, val:num
num:8, (format:8,
scale:8)[n]

num:8, (format:8,
scale:8)[n]

type:8

id:8, val:num

id:8, val:num

id:8, idx:8, val:num
vallnum

id:8, val:num

id:8, val:num

B.1. INSTRUCTIONS

OP_SET_LIST
OP_LIST_CREATE_1D

OP_LIST_CREATE_2D

OP_LIST_SET_1D
OP_LIST_SET_2D
OP_LIST_FILL
OP_PRINT
OP_PRINT_LIST

OP_LABEL

OP_GOTO
OP_GOTO_IF

OP_GOTO_IF_NOT

OP_CALL

OP_CALL_ARGS

OP_CALL_INTERNAL

OP_CALL_INTERNAL_ARGS

OP_RETURN

OP_BLOCK

OP_BREAK

OP_BREAK_IF

OP_IF

OP_IF_ELSE

Save list in a list variable
Create a 1D list for specified
number of items

Create a 2D list for specified
number of items in x and y
directions

Save value in the 1D list at
specified index

Save value in the 2D list at
specified index

Fill the list with the specified
value

Print the value

Print the list

Mark a label that can be
jumped to

Go to a label

Go to a label if the value is
truthy

Go to a label if the value is
falsy

Go to a label and store the
current index on the stack
Go to alabel, set the given list
of parameters, and store the
current index on the stack
Go to an internal function ref-
erenced by the label

Go to an internal function ref-
erenced by the label, and set
the given list of parameters
Return from the current call
Execute a block of instruc-
tions

Break out of the current block
or return

Break out of the current block
or return if the value is truthy
Execute the instruction if the
value is truthy

Execute the first instruction if
the value is truthy, otherwise
execute the second instruc-
tion

175

id:8, 1st:list

id:8, type:8(list_e),
n:num

id:8, type:8(list_e),
n:num, m:num

id:8, idx:num,
val:num
id:8, idx:num,

idy:num, val:num

id:8, val:num

val:num
Ist:list
label:8

label:8

label:8, val:num

label:8, val:num

label:8

label:8, n:8, idx[n]
internal:8
internal:8, n:§,
idx[n]

No parameters

n:8, instruction[n]
No parameters
val:num

val:inum, instruc-
tion

val:num, instruc-
tion, instruction

APPENDIX B. LOGICGLUE DRIVER SPECIFICATION

OP_IF_ELIF_ELSE

OP_SWITCH

OP_LOOP

OP_FOREACH

OP_FOREACH_BYTE

OP_EXIT
OP_EXIT_CODE

OP_ASSERT

OP_ASSERT_CODE

HW_DELAY_MS

HW_DELAY_US

HW_GPIO_CONFIG

HW_GPIO_WRITE

HW_GPIO_PULSE_MS

HW_GPIO_PULSE_MS_n

HW_GPIO_PULSE_US

Execute the instruction if the
value is truthy, if no match
execute the default instruc-
tion

Switch the value over cases
and execute the correspond-
ing instruction, if no match
execute the default instruc-
tion

Create a loop and execute the
instruction

For each item in the list, exe-
cute the instruction

For each byte in the list, exe-
cute the instruction

Exit the program

Exit the program with a
given code

Assert the value is truthy, if
not exit the program

Assert the value is truthy, if
not exit the program with a
given code

Delay for specified millisec-
onds

Delay for specified microsec-
onds

Configure the mode of the
pin

Set the state of the pin

Pulse the pin to state for spec-
ified milliseconds

Pulse the pin to state for spec-
ified milliseconds, multiple
times with interval

Pulse the pin to state for spec-
ified microseconds

176

n:g, (val:num,
instruction)[n],

instruction

n:8, switch:num,
(case:num, in-
struction)[n],
instruction

start:num,
end:num,
incr:num, in-
struction

Ist:list, instruction

Ist:list, instruction

No parameters

code:num

val:num

val:num, code:num

duration:num

duration:num

pin:num,
mode:num
pin:num,
state:num
pin:num,
state:num, du-
ration:num
pin:num,
state:num, du-
ration:num, inter-
val:num, n:num
pin:num,
state:num, du-
ration:num

B.1. INSTRUCTIONS

HW_GPIO_PULSE_US_n

HW_GPIOTE_CONFIG

HW_ADC_CONFIG

HW_PWM_CONFIG

HW_PWM_WRITE

HW_I2C_CONFIG

HW_I2C_WRITE
HW_I2C_WRITE_2
HW_I2C_WRITE_LIST
HW_SPI_CONFIG

HW_SPI_WRITE
HW_SPI_WRITE_2
HW_SPI_WRITE_LIST
HW_UART_CONFIG

HW_UART_WRITE
HW_UART_WRITE_2
HW_UART_WRITE_LIST
HW_DTH_CONFIG

HW_WS2812_CONFIG

HW_WS2812 WRITE
HW_WS2812 WRITE_LIST

Pulse the pin to state for spec-
ified microseconds, multiple

times with interval

Configure interrupts for pin
on edge, when edge triggers,
execute label

Configure ADC on specified
pin

Configure PWM on specified
pin with period

Set PWM duty cycle on spec-
ified pin

Configure 12C with address
and frequency

Write value to 12C

Write two values to 12C
Write list to 12C

Configure SPI with CS, fre-
quency, mode, and order
Write value to SPI

Write two values to SPI
Write list to SPI

Configure UART with baud
rate, and mode

Write value to UART

Write two values to UART
Write list to UART
Configure DTH on specified
pin

Configure WS2812 on speci-
fied pin

Write value to W52812
Write list to W52812

pin:num,
state:num, du-
ration:num, inter-
val:num, n:num
pin:num,
edge:num, la-
bel:8

pinmnum

pin:num, pe-
riod:num
pin:num,
duty:num

addr:num, freq:8

val:num

val:num, val:num
Ist:list

cs:num, freq:8,
mode:8, order:8
val:num

val:num, val:num
Ist:list

baudrate:8, mode:8

val:num
val:num, val:num
Ist:list

pinmnum
pin:num

val:num

Ist:list

177

APPENDIX B. LOGICGLUE DRIVER SPECIFICATION

B.2 Numerics Subsystem

Instruction Description Parameters
_Us Define an 8-bit unsigned in- val:8
teger constant
_U1le Define a 16-bit unsigned in- val:16
teger constant
_U32 Define a 32-bit unsigned in- val:32
teger constant
_18 Define an 8-bit signed integer ~ val:8
constant
_I16 Define a 16-bit signed integer ~ val:16
constant
_132 Define a 32-bit signed integer val:32
constant
_FLT Define a 32-bit floating-point ~ val:32
constant
_FLT_HEX Define a 32-bit floating-point ~ val:32
constant in hexadecimal for-
mat
_FIX Define a fixed-point constant val:32, frac:8
_CONFIG Get configuration value id:8
_ARG Get the value at specified in- id:8, idx:num
dex from the argument
_PROP Get the value of the current No parameters
property
_VAR Get variable value id:8
_VAR_LOCAL Get local variable value id:8
_VAR_PARAM Get parameter value id:8
LIST_GET_1D Get the value at specified in- id:8, idx:num
dex from the 1D list
LIST_GET_2D Get the value at specified in- id:8, idxmnum,
dex from the 2D list idy:num
LIST_SIZE Get the number of items in id:8
the list
CAST Cast the numeric value to the type:8(num_e),
given type val:num
MATH_ADD Add two numeric values val_a:num,
val_b:num
MATH_SUB Subtract second numeric val_a:num,
value from the first val_b:num
MATH_MUL Multiply two numeric values val_amnum,

178

val_b:num

B.2. NUMERICS SUBSYSTEM

MATH_DIV

MATH_MOD

MATH_POW

MATH_SQRT

MATH_AND

MATH_OR

MATH_XOR

MATH_NOT

MATH_SHL

MATH_SHR

MATH_MIN

MATH_MAX

MATH_CLAMP

MATH_ABS

MATH_CEIL

MATH_FLOOR

MATH_ROUND

MATH_SIN

MATH_COS

MATH_TAN

MATH_ASIN

Divide the first numeric
value by the second

Get the remainder of division
of the first numeric value by
the second

Raise the first numeric value
to the power of the second
Get the square root of the
numeric value

Perform bitwise AND opera-
tion on two numeric values
Perform bitwise OR opera-
tion on two numeric values
Perform bitwise XOR opera-
tion on two numeric values
Perform bitwise NOT opera-
tion on the numeric value
Shift the first numeric value
left by the number of bits
specified by the second

Shift the first numeric value
right by the number of bits
specified by the second

Get the minimum of two nu-
meric values

Get the maximum of two nu-
meric values

Clamp the numeric value
within the range specified by
low and high values

Get the absolute value of the
numeric value

Get the ceiling value of the
numeric value

Get the floor value of the nu-
meric value

Round the numeric value
Get the sine of the numeric
value

Get the cosine of the numeric
value

Get the tangent of the nu-
meric value

Get the arcsine of the nu-

meric value

179

val_a:num,
val_b:num
val_a:num,
val_b:num

val_a:num,
val_b:num

val:num

val_a:num,
val_b:num
val_a:num,
val_b:num
val_a:num,
val_b:num

val:num

val_a:num,
val_b:num

val_a:num,
val_b:num

val_a:num,
val_b:num
val_a:num,
val_b:num

val:num, low:num,

high:num
val:num
val:num
val:num

val:num

val:num
val:num
val:num

val:num

APPENDIX B. LOGICGLUE DRIVER SPECIFICATION

MATH_ACOS

MATH_ATAN

MATH_ATAN2

BITS_BIT

BITS_MASK_NEG

BITS_MASK_POS

IF_EQ

IF_NE

IF_GT

IF_GE

IF_LT

IF_ LE

BOOL_AND

BOOL_OR

BOOL_NOT

EVAL_EQ

Get the arccosine of the nu-
meric value

Get the arctangent of the nu-
meric value

Get the arctangent of the quo-
tient of the two numeric val-
ues

Get the value of the nth bit
of the numeric value

Create a mask with back-
ground 1 and the nth bit 0
Create a mask with back-
ground 0 and the nth bit 1
Evaluate to val_if if val_a ==
val_b, otherwise evaluate to
val_else

Evaluate to val_if if val_a !=
val_b, otherwise evaluate to
val_else

Evaluate to val_if if val_a >
val_b, otherwise evaluate to
val_else

Evaluate to val_if if val_a >=
val_b, otherwise evaluate to
val_else

Evaluate to val_if if val_a <
val_b, otherwise evaluate to
val_else

Evaluate to val_if if val_a <=
val_b, otherwise evaluate to
val_else

Evaluate to the boolean val_a
AND val b

Evaluate to the boolean val_a
ORval_b

Evaluate to the boolean NOT
val

Evaluate to 1 if val_a ==
val_b, otherwise 0

180

val:num
val:num

val:num

val:num, n:num

type:8(num_e),
mask:num
type:8(num_e),
mask:num
val_a:num,
val_b:num,
val_if:num,
val_else:num
val_a:num,
val_b:num,
val_if:num,
val_else:num
val_a:num,
val_b:num,
val_ifnum,
val_else:num
val_a:num,
val_b:num,
val_ifnum,
val_else:num
val_a:num,
val_b:num,
val_ifnum,
val_else:num
val_a:num,
val_b:num,
val_ifnum,
val_else:num
val_a:num,
val_b:num
val_a:num,
val_b:num

val:num

val_a:num,
val_b:num

B.2. NUMERICS SUBSYSTEM

EVAL_NE

EVAL_GT

EVAL_GE

EVAL_LT

EVAL_LE

NUM_SWITCH

NUM_LOOP_IDX_0
NUM_LOOP_IDX_1
HW_MILLIS

HW_MICROS

HW_GPIO_READ

HW_GPIO_PULSE_READ

HW_GPIO_PULSE_READ_T

HW_ADC_READ

HW_I2C_READ_US8

HW_I2C_READ_U1l6

HW_I2C_READ_U32

HW_I2C_READ_I8

HW_12C_READ_I16

HW_12C_READ_I32

HW_I2C_READ_FLT

Evaluateto 1if val_a!=val_b,
otherwise 0

Evaluate to 1 if val_a > val_b,
otherwise 0

Evaluate to 1 if val_a >=
val_b, otherwise 0

Evaluate to 1 if val_a < val_b,
otherwise 0

Evaluate to 1 if val a <=
val_b, otherwise 0

Switch the value over cases
and evaluate to val if switch
== case, if no match, evaluate
to def

Get the current loop index 0
Get the current loop index 1
Returns the number of mil-
liseconds since the board was
powered up

Returns the number of mi-
croseconds since the board
was powered up

Read the value of a GPIO pin
Get the duration of a pulse
on the pin

Get the duration of a pulse
on the pin or timeout

Read the value of an ADC

pin

Read an 8-bit unsigned inte-
ger from the I2C device
Read a 16-bit unsigned inte-
ger from the I2C device

Read a 32-bit unsigned inte-
ger from the I2C device
Read an 8-bit signed integer
from the I2C device

Read a 16-bit signed integer
from the 12C device
Read a 32-bit signed integer
from the I2C device
Read a 32-bit floating point
number from the 12C device

181

val_a:num,
val_b:num
val_a:num,
val_b:num
val_a:num,
val_b:num
val_a:num,
val_b:num
val_a:num,
val_b:num
n:8, switch:num,
(case:mnum,
val:num)[n],
def:num

No parameters
No parameters

No parameters

No parameters

pin:num
pin:num,
statenum
pin:num,
stateenum, time-
out:num
pinmnum

No parameters
No parameters
No parameters
No parameters
No parameters

No parameters

No parameters

APPENDIX B. LOGICGLUE DRIVER SPECIFICATION

HW_I2C_WRITE_READ_US8

HW_I2C_WRITE_READ_U16

HW_I2C_WRITE_READ_U32

HW_I2C_WRITE_READ_I8

HW_I2C_WRITE_READ _I16

HW_I2C_WRITE_READ_I32

HW_I2C_WRITE_READ_FLT

HW_SPI_READ_US

HW_SPI_READ_U16

HW_SPI_READ_U32

HW_SPI_READ_I8

HW_SPI_READ_I16

HW_SPI_READ_I32

HW_SPI_ READ_FLT

HW_SPI_WRITE_READ_US8

HW_SPI_WRITE_READ_U16

HW_SPI_ WRITE_READ_U32

Write a numeric to the 12C
device, then read an 8-bit un-
signed integer

Write a numeric to the 12C
device, then read a 16-bit un-
signed integer

Write a numeric to the 12C
device, then read a 32-bit un-
signed integer

Write a numeric to the 12C
device, then read an 8-bit
signed integer

Write a numeric to the I2C de-
vice, thenread a 16-bit signed
integer

Write a numeric to the I2C de-
vice, thenread a 32-bit signed
integer

Write a numeric to the 12C de-
vice, then read a 32-bit float-
ing point number

Read an 8-bit unsigned inte-
ger from the SPI device
Read a 16-bit unsigned inte-
ger from the SPI device
Read a 32-bit unsigned inte-
ger from the SPI device
Read an 8-bit signed integer
from the SPI device

Read a 16-bit signed integer
from the SPI device

Read a 32-bit signed integer
from the SPI device

Read a 32-bit floating point
number from the SPI device
Write a numeric to the SPI
device, then read an 8-bit un-
signed integer

Write a numeric to the SPI
device, then read a 16-bit un-
signed integer

Write a numeric to the SPI
device, then read a 32-bit un-
signed integer

182

val:num

val:num

val:num

val:num

val:num

val:num

val:num

No parameters

No parameters

No parameters

No parameters

No parameters

No parameters

No parameters

val:num

val:num

val:num

B.2. NUMERICS SUBSYSTEM

HW_SPI_WRITE_READ _I8

HW_SPI_WRITE_READ _I16

HW_SPI_WRITE_READ_I32

HW_SPI_WRITE_READ_FLT

HW_UART_READ_US8

HW_UART_READ_U16

HW_UART_READ_U32

HW_UART_READ_I8

HW_UART_READ I16

HW_UART_READ_I32

HW_UART_READ_FLT

Write a numeric to the SPI
device, then read an 8-bit
signed integer

Write a numeric to the SPI de-
vice, thenread a 16-bit signed
integer

Write a numeric to the SPI de-
vice, thenread a 32-bit signed
integer

Write a numeric to the SPI de-
vice, then read a 32-bit float-
ing point number

Read an 8-bit unsigned inte-
ger from the UART device
Read a 16-bit unsigned inte-
ger from the UART device
Read a 32-bit unsigned inte-
ger from the UART device
Read an 8-bit signed integer
from the UART device

Read a 16-bit signed integer
from the UART device

Read a 32-bit signed integer
from the UART device

Read a 32-bit floating point
number from the UART de-
vice

val:num

val:num

val:num

val:num

No parameters

No parameters

No parameters

No parameters

No parameters

No parameters

No parameters

183

APPENDIX B. LOGICGLUE DRIVER SPECIFICATION

B.3 Lists Subsystem

Instruction Description Parameters

_LIST_US8 Create a list of 8-bit unsigned size:8
integers

_LIST Ule Create a list of 16-bit un- size:8
signed integers

_LIST _U32 Create a list of 32-bit un- size:8
signed integers

_LIST I8 Create a list of 8-bit signed size:8
integers

_LIST I16 Create a list of 16-bit signed size:8
integers

_LIST 132 Create a list of 32-bit signed size:8
integers

_LIST FLT Create a list of 32-bit floating size:8
point numbers

_LIST Get list with specified id id:8

_LIST_PARAM Get list parameter with spec- id:8

HW_I2C_READ_LIST

HW_I2C_WRITE_READ_LIST

HW_SPI_ READ_LIST

HW_SPI_WRITE_READ_LIST

HW_UART_READ_LIST

HW_UART_WRITE_READ_LIST

HW_DTH_READ_LIST

ified id

Read a list from the 12C de-
vice

Write a list to the I2C device,
then read a list

Read a list from the SPI de-
vice

Write a list to the SPI device,
then read a list

Read a list from the UART
device

Write a list to the UART de-
vice, then read a list

Read a list from the DHT
sensor with specified variant
and pin

No parameters

No parameters

No parameters

No parameters

No parameters

No parameters

variant:8, pin-num

184

C

LocicGLUE INTERPRETER

C.1 Platform-Specific Functions

//=== GPIO ===//

status_e target_gpio config(const uint8 t pin, const gpio mode_e mode);

status_e target_gpio_write(const uint8_t pin, const uint8_ t state);

status_e target_gpio_read(const uint8_t pin, uint8_t* state);

status_e target_gpio_read pulse(const uint8 t pin, const uint8 t state, uint32_t* pulse);

status_e target_gpio_read_pulse_timeout(const uint8_t pin, const uint8_t state, const uint32_t timeout, uint32_t* pulse);
//=== GPIOTE ===//

status_e target_gpiote config(const uint8_t pin, const gpio_edge e edge, const gpio_irq f callback, const uint8 t idx);
/f=== PWM ===//

status_e target_pwm_config(const uint8_t pin, const uintlé_t period);

status_e target_pwm_write(const uint8_t pin, const uintl6_t duty);

== ADC ===//

status_e target_adc_config(const uint8_t pin);

status_e target_adc_read(const uint8_t pin, uintl6_t* value);

ff=== 12C ===/}

status_e target_i2c_config(const i2c_freq_e freq, const uint8_t mtu);

status_e target_i2c_write(const uint8_t address, uint8 t* buffer, uintl6_t len);

status_e target_i2c_read(const uint8_t address, uint8 t* buffer, uintl6_t len);

status_e target_i2c_write_read(const uint8_t address, uint8_t* write_buffer, uintl6_t write_len, uint8_t* read_buffer, uintl6_t read_len);
//=== SPI ===//

status_e target_spi_config(const spi_freq_e freq, const spi_mode_e mode, const spi_order_e order, const uint8 t mtu);
status_e target spi write(const uint8 t cs, uint8 t* buffer, uintl6_t len);

status_e target_spi_read(const uint8_t cs, uint8 t* buffer, uintl6_t len);

status_e target_spi_write_read(const uint8 t cs, uint8_t* write_buffer, uintl6_t write_len, uint8 t* read_buffer, uintl6_t read_len);
//=== UART ===//

status_e target_uart_config(const vart_baud_e baud, const uart_mode_e mode, const uint8_t mtu);

status_e target_uart_write(const uint8 t id, uint8 t* buffer, uintl6_t len);

status_e target_uart_read(const uint8_t id, uint8 t* buffer, uintl6_t len);

status_e target_uart_write_read(const uint8_t id, uint8_t* write_buffer, uintl6_t write_len, uint8_t* read buffer, uintl6_t read_len);
/=== DHT ===//

status_e target_dht_config(const uint8 t pin);

status_e target_dht_read(const dth_variant_e variant, const uint8_ t pin, uint8_t* buffer);

/

void target_sleep_ms(uint32_t ms);
void target_sleep_us(uint32_t us);
uint32_t target millis();

uint64_t target_micros();

/7 MEMORY ===//
void* target_malloc(uintl6_t size);

void* target calloc(uintl6_t num, uintl6 t size);
void* target_realloc(void* ptr, uintl6_t size);
void target_free(void* ptr);

int target_get free_memory(void);

uintl6_t target_get memory_ counter(void);

/7 INTERRUPTS =//

void target_disable_interrupts(void);

void target_enable_interrupts(void);

uint8_t target_in_interrupt(void);

Figure C.1: Header file detailing the platform-specific functions needed to be implemented when porting
LogicGlue to a new platform.

187

	Front Page
	Acknowledgements
	Abstract
	List of Scientific Contributions
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Introduction to Physical Computing
	Interaction Modalities in Physical Computing
	Exploring the Diversity of Physical Computing Platforms
	Assembling Hardware: A Tangible Foundation
	Developing Software: Bringing Hardware to Life
	Bridging Hardware and Software: The Role of Hardware and Software Glue

	Research Questions
	Research Goals
	Contributions
	Dissertation Outline

	Established Approaches to Electronics Prototyping
	Introduction
	Types of Prototyping
	Bridging Between Types
	Taking a look into the Future

	Finding Common Ground
	Introduction
	Identifying and Reviewing the Literature
	What is an Electronics Prototyping Toolkit?
	Corpus of Products and Publications
	Characteristics
	Data Points and Clusters

	Electronic Prototyping Platform Taxonomy
	Nature and Application
	Assembly of Prototypes
	Deploying and Configuring
	Availability and Adoption

	Analyzing the characteristics
	Understanding How Electronics Toolkits are Used
	Our Respondents and Their Prototyping Experience
	Use of Prototyping Platforms
	Important Characteristics of Prototyping Platforms
	Experiences of Type 1 Prototyping and Scaling Up to Multiple Copies

	Discussion
	Summary

	Plug-and-Play Hardware Through CircuitGlue
	Introduction
	Walkthrough
	Related Work
	Modules for Electronics Prototyping
	Tools to Ease Breadboarding and Development
	Reprogrammable Integrated Circuits

	Design Rationale
	Early Feedback on the CircuitGlue Concept
	Design Decisions
	Jacdac as Bus Protocol

	Supporting New Modules
	CircuitGlue Hardware Design
	System-on-Chip
	Regulating Power
	Changing the Assignment of a Programmable Header Pin
	Circuit Board Design and Manufacturing

	CircuitGlue Software Architecture
	CircuitGlue Firmware
	CircuitGlue Configuration Tool
	Circuit Diagram Generator

	Prototyping Styles and Benefits
	Understanding, Testing and Comparing Modules
	Rapid Prototyping with Heterogeneous Modules
	Facilitate Breadboarding
	Use Third Party Modules with Jacdac Ecosystem
	Advanced Use

	Technical Benchmark
	Preliminary User Evaluation
	Participants
	Procedure
	Results

	Incorporating User Feedback
	Modular PCB Design
	Power Management
	Changing Pin Assignments
	Enhanced Visual Feedback
	CircuitGlue Configuration Tool

	Discussion and Future Work
	Summary

	Plug-and-Play Software Drivers Through LogicGlue
	Introduction
	LogicGlue
	Writing Application Logic
	Writing Driver Specifications

	Related Work
	Software Abstraction
	Standardized Communication Interfaces
	Intermediate Representation Layers

	LogicGlue Driver Specification
	Function Definitions
	Numeric Instructions
	List Instructions
	Branching Instructions
	Advanced Instructions

	LogicGlue Interpreter
	LogicGlue High-Level Programming Library
	Converting Data Formats

	Supporting LogicGlue on a new Platform
	LogicGlue Benchmark
	Discussion and Future Work
	Summary

	On-going Research into Unified Plug-and-Play Programming
	Introduction
	UniGlue: Bridging Hardware and Software for Unified Prototyping
	Shared Resource Bus
	Communication Bus
	UniGlue Interface
	UniGlue Extension Shield

	Walkthrough
	Discussion
	Plug-and-Play
	Moving from TYPE 2 to TYPE 3

	Limitations and Future Work
	Conclusion

	Discussion and Future Work
	Addressing the Research Goals
	The Role of Ecosystems in Physical Computing
	Defining and Understanding Ecosystems
	Challenges and Barriers in Ecosystems
	The Future of Ecosystems

	The Importance of Future User Evaluations
	Future Directions
	Responsive Application Code
	Configuration through Hardware and Software
	Modular Hardware Design
	Moving from Prototype to Product
	Enhancing Collaboration and Community Engagement
	Addressing Environmental and Sustainability Concerns

	Conclusion
	Toolkit Classification
	Holistic Characteristics

	LogicGlue Driver Specification
	Instructions
	Numerics Subsystem
	Lists Subsystem

	LogicGlue Interpreter
	Platform-Specific Functions

